Select Research

Color2Gray: Salience-Preserving Color Removal

Visually important image features often disappear when color images are converted to grayscale. The algorithm introduced here reduces such losses by attempting to preserve the salient features of the color image. The Color2Gray algorithm is a 3-step process: 1) convert RGB inputs to a perceptually uniform CIE L*a*b* color space, 2) use chrominance and luminance differences to create grayscale target differences between nearby image pixels, and 3) solve an optimization problem designed to selectively modulate the grayscale representation as a function of the chroma variation of the source image. The Color2Gray results offer viewers salient information missing from previous grayscale image creation methods.

Abstraction of Man-Made Shapes

Shape Abstraction
Man-made objects are ubiquitous in the real world and in virtual environments. While such objects can be very detailed, capturing every small feature, they are often identified and characterized by a small set of defining curves. Compact, abstracted shape descriptions based on such curves are often visually more appealing than the original models, which can appear to be visually cluttered. We introduce a novel algorithm for abstracting three-dimensional geometric models using characteristic curves or contours as building blocks for the abstraction. Our method robustly handles models with poor connectivity, including the extreme cases of polygon soups, common in models of man-made objects taken from online repositories. In our algorithm, we use a two-step procedure that first approximates the input model using a manifold, closed envelope surface and then extracts from it a hierarchical abstraction curve network along with suitable normal information. The constructed curve networks form a compact, yet powerful, representation for the input shapes, retaining their key shape characteristics while discarding minor details and irregularities.