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ABSTRACT

A new approach to instrument identification based on individual par-
tials is presented. It makes identification possible even when the
concurrently played instrument sounds have a high degree of spec-
tral overlapping. A pairwise comparison scheme which emphasizes
the specific differences between each pair of instruments is used for
classification. Finally, the proposed method only requires a single
note from each instrument to perform the classification. If more than
one partial is available the resulting multiple classification decisions
can be summarized to further improve instrument identification for
the whole signal. Encouraging classification results have been ob-
tained in the identification of four instruments (saxophone, piano,
violin and guitar).

Index Terms— instrument identification, polyphonic musical
signals, pairwise comparison, partial-based classification

1. INTRODUCTION

The information of which instruments are present in a given musi-
cal signal can benefit a number of applications in the audio signal
processing area. For example, the accuracy of methods trying to
classify musical signals into genres can be greatly improved by such
information. Also, sound source separation techniques can be better
tuned to deal with the characteristics of particular instruments.

A number of techniques to identify musical instruments have
been proposed in the literature. Many proposals can only deal with
monophonic signals (e.g. [1]). The monophonic case is in general
less challenging than the polyphonic one, as there is no interference
among instruments. Some proposals can deal with solo phrases with
accompaniment (e.g. [2]). In those cases, normally the solo instru-
ment has to be strongly dominant, so the signals characteristics are
quasi-monophonic. Also, methods based on solo phrases analysis
normally provide a classification for the whole signal, instead of in-
dividual notes. There are also some proposals that were designed
specifically to deal with instrument duets (e.g. [3]). Methods capa-
ble of dealing with polyphonies containing up to four instruments
were also proposed [4, 5, 6, 7], but all of them have some important
limitations: the possible instrument combinations are set a priori,
limiting the generality [4]; only notes with duration above 300 ms
are processed [5]; the accuracy for higher polyphonies (four or more
instruments) is below 50% [6, 7].

This paper presents a simple and reliable strategy to identify
instruments in polyphonic musical signals that overcomes many of
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the main limitations faced by its predecessors. The identification is
based on a pairwise comparison between instruments. A related but
more complex approach was used in [4]. This pairwise comparison
approach has some particular characteristics:

- Whenever possible, the features used to represent each pair of
instruments were designed to characterize individual partials instead
of individual notes. Using individual partials is desirable because,
in western music, most content of each instrument overlaps with the
contents of other sources both in time and frequency, making the
identification a challenging task. However, one can expect to find at
least some unaffected partials throughout the signal, which can be
explored to provide cues about the respective instrument. As a con-
sequence, the proposed algorithm can identify the instruments even
when all but one partial collide with partials belonging to other in-
struments and 2) if more than one isolated partial is available, the
results can be combined to provide a more accurate identification.
Among the pairs of instruments considered in this paper, only one
(piano-guitar) could not be represented in a partial basis. However,
the feature adopted in this particular case allows correct identifica-
tion even if all partials of the instrument suffer interference from
other instruments, as will be seen in the following sections.

- Only one feature is used to linearly separate two instruments. A
comparison of this approach with traditional machine learning meth-
ods is presented in Section 3.

As a result of the characteristics mentioned above, the proposed
strategy is able to deal with polyphonies of any order, provided that
at least one partial of each instrument does not suffer interference
from other instruments.

Summarizing, this paper aims to show that: accurate estimates
are possible using only a small number of partials, without requiring
the entire note; integrating over partials can potentially improve the
results; using only one carefully designed feature to separate each
pair of instruments is more effective than traditional machine learn-
ing methods.

To evaluate the effectiveness of this approach we consider four
instruments - alto saxophone, violin, piano and acoustic guitar - that
were carefully selected to represent the more general situations ex-
pected when more instruments are considered. More information
about this choice can be found in Section 2.

2. THE METHOD

2.1. Experimental setup

The 1,000 mixtures used in the training stage were artificially gener-
ated by summing individual notes from four instruments taken from
the RWC database [8]. Half the mixtures contain two instruments,
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Table 1. Separation accuracy for each pair of instruments.

SV SP SG PV VG PG1 PG2

Acc. 90% 93% 94% 90% 93% 95% 83%

and the other half contain three instruments. The instruments and
respective fundamental frequencies that compose each signal were
taken randomly, provided that each instrument has at least one iso-
lated partial. The entire note range of each instrument is considered,
and the signals are sampled at 44.1 kHz. The 1,000 mixtures used
in the tests were generated in the same way but, in order to pro-
vide some cross-database validation, half of them contain at least
one instrument from the University of Iowa musical instrument sam-
ples database [9]. Also, none of the instrument samples used in the
trainig set was used in the test set.

Some actions must be performed in order to make the instru-
ment identification possible. First, the signal must be segmented
according to the onsets of the notes, which can be performed au-
tomatically using tools like those presented in [10]. Segments that
are smaller than 100 ms - which occur in less than 5% of the cases
- are not considered. After that, the number of instruments present
in each segment must be determined, using, for example, the tech-
nique described in [11]. Finally, the fundamental frequency (F0)
of each instrument must be estimated (e.g. [12]). In this work, all
the information regarding segmentation, number of instruments and
fundamental frequency in each segment is assumed to be known, in
order to avoid cascading errors.

2.2. Feature selection and extraction

As commented before, each specific pair of instruments has a feature
associated with it. Therefore, the features to be extracted depend
directly on which instruments are being considered.

Four instruments - alto saxophone (S), violin (V), piano (P) and
acoustic guitar (G) - were chosen to validate the strategy. Hence,
there are six possible pairs of instruments. The instruments in the
pairs SP, SG, VP and VG have considerably different characteristics
(temporal waveform, spectral content, etc), while the instruments in
the pair SV have some similar characteristics and the instruments in
the pair PG are closely related, as discussed in [13]. In this way, the
technique can be tested under different levels of difficulty.

In total, 54 features were considered. Most of the features were
implemented based on [14] and [15], slightly modified to be ex-
tracted on individual partials - a partial, in the context of this work,
refers to a narrow spectral band in which a harmonic of a given fun-
damental frequency lies. The feature selection for each pair of instru-
ments aimed for the best linear separation between the instruments
present in the training dataset – such a separation is given by a single
boundary value that separates the value ranges of each instrument. .
All selected features are calculated individually for each partial, ex-
cept that adopted for the pair PG, as will be seen in the following.
Table 1 shows the best separation accuracy achieved for each pair.
PG1 and PG2 refer to the main and alternative features of pair PG.

Table 1 was generated using the following features:

SV: bandwidth containing 90% of the energy of the partial. This
feature is calculated according to the following steps:

- This feature must be calculated in the frequency domain, thus
a discrete Fourier transform is calculated for the segments, and then
the magnitude spectrum is extracted.

- The value of this feature for partial n is given by the narrowest
band that concentrates 90% of the energy of the frequency interval
[(n− 0.4) · F0, (n + 0.4) · F0].

- If there is a partial from another instrument in that interval, the
band [(q − 0.1 · f, q + 0.1 · f)] is removed from the calculation,
where q is the center frequency of the interfering partial, and f is the
fundamental frequency associated to q.

SP: center of gravity of the temporal envelope. This feature is
calculated according to the following steps:

- Each partial is isolated by a third-order Butterworth filter, ac-
cording to the interval [(n− 0.4) · F0, (n + 0.4) · F0].

- The absolute value of the Hilbert transform, followed by a But-
terworth filter, is used to estimate the time envelope of the partial.

- The envelope center of gravity is calculated according to

cn =
1

T
·

T∑
t=1

t · xn(t), (1)

where x is the temporal envelope, t is the time index, T is the number
of samples, and n is the partial index.

SG, PV, VG: note skewness. It measures the asymmetry of the
envelope around the cn. It is calculated according to

skn =
T∑

t=1

xn(t) ·
(

t

T
− cn

)3 /
sp1.5

n , (2)

where spn is the note spread, which is given by

spn =
T∑

t=1

xn(t) ·
(

t

T
− cn

)2

. (3)

PG: dominance of the 100-120 Hz band. No feature calculated
for individual partials was able to reliably separate this pair. How-
ever, it was observed that all guitars in the database generate a peak
somewhere in the band 100-120 Hz due to body resonances, which
in general does not happen for piano. This has motivated the creation
of a new feature which is calculated according to

d = M/L, (4)

where M is the mean of the magnitude spectrum in the 10-100 Hz
band, and L is the magnitude of the strongest peak in the 100-120
Hz band. The smaller is the resulting value, the more dominant is the
peak. If the next value larger than the peak is closer than 30 Hz, d is
multiplied by two. This aims to compensate for the cases in which
the peak in the 100-120 Hz is mainly due to a neighbor partial.

A partial may be located in the 100-120 Hz band, in which case
this feature is ineffective. If this happens, an alternative feature, re-
lated to the main one, is calculated. It was observed that both the
piano and the acoustic guitar generate a small peak at 49 Hz, which
tends to be slightly more prominent for the guitar. It is calculated in
the same way as Eq. 4, but here M is the mean magnitude spectrum
in the bands 44-48 Hz and 50-54 Hz, and L is the magnitude of the
strongest peak in the 47-51 Hz band.

The peak located at 49 Hz is present in all tested piano and guitar
samples. Since the samples come from different instruments and
databases, it seems that this phenomenon is not due to specificities
of the instruments bodies or the acoustics of the room. However,
a definitive answer will only be possible after further investigation
with additional samples from other databases.

2.3. Instrument identification procedure

As commented before, the algorithm assumes that the number of
instruments and respective fundamental frequencies are known.
Therefore, it is possible to identify the isolated partials that do not
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suffer interference from other instruments. Only isolated partials are
submitted to the next steps of the algorithm.

Each isolated partial is submitted to the pairwise comparison, in
which an instrument is chosen as the winner for each pair, and the
partial is labeled according to the instrument with most wins. If a
two-way equality occurs, the winner is the instrument that won when
both instruments were considered in a pair. If a three-way equality
occurs, the winner is the instrument whose related features have the
greatest overall identification accuracy.

The same procedure is repeated for all partials related to that
fundamental frequency. Then, the instrument with more wins
throughout the isolated partials is taken as the correct one for that
note. There are two criteria to break possible equalities. The first one
just takes into account the total number of wins that each instrument
got when each partial was considered separately. If the equality
remains, the instrument assigned to the strongest partial is taken as
final winner. The same procedure is repeated for all fundamental
frequencies, until all instruments have been identified.

3. EXPERIMENTAL RESULTS

Fig. 1 shows six confusion matrices, each one considering a different
number of isolated partials (number in the top-left of the matrices).
An average of 750 instances were used for each instrument.

Tests were also performed with the alternative feature described
in Section 2.2. The results were very close to those shown in Fig. 1,
except in the case of the acoustic guitar, for which the accuracy
dropped to 82.1%, no matter the number of partials. However, the
alternative feature will be used only in the few cases with very low
fundamental frequencies, thus having little impact in the overall per-
formance of the approach.

Some conclusions can be drawn from Fig. 1. First, it can be ob-
served that the results are good even when only one partial is avail-
able, with an overall accuracy close to 91%. Also, as expected, the
results improve as more partials are available, until 96% accuracy
is achieved when six or more isolated partials are available. Such
results indicate that the pairwise comparison approach is indeed ef-
fective, because the overall accuracy is greater than the accuracies
obtained for each pair of instruments using individual features.

In a first analysis, the results may seem unrealistically good.
Three factors explain those results. First, one must take into account
that only four instruments are considered. Also, all instruments are
taken from the same database, which can cause slightly biased re-
sults [16]. Future tests are expected to include a cross-validation
among databases. Finally, a very effective feature was found to the
difficult pair PG, which significantly improved the overall results.

As commented in Section 2.1, part of the samples used in the
tests come from the University of Iowa [9] database. The results
considering only such samples are very close to those shown in Fig. 1
– the accuracy dropped, in average, 1.8%.

It is also instructive to know how the partial-wise approach com-
pares to cases in which the whole notes are considered instead. Ta-
ble 2 shows the comparison. The results for the whole note approach
were obtained by filtering out partials known to be colliding, and
then averaging the individual features over the entire note. The P
and N in the first line refer to partial-wise and note approaches, and
the numbers indicate the number of available partials. The results
are in percentage of correct identifications.

As can be seen, for violin the performance is clearly poorer when
the entire note is used. This is because the significant differences
among the partials make the partial-wise approach more suitable, as

Table 2. Comparison between partial and note approaches.

P1 N1 P3 N3 P6 N6

Sax 89.2 88.8 92.3 92.0 95.1 94.4
Piano 91.1 91.0 94.9 94.0 96.7 96.3
Violin 90.0 87.3 93.8 90.1 95.1 91.4
Guitar 93.3 93.3 95.2 95.0 97.7 97.1

Table 3. Effect of backward onset misplacement.

Common Partials 20% 40% 60% 80% 100%

1/3 0.92 0.88 0.85 0.83 0.82
1/2 0.86 0.82 0.80 0.75 0.74
1 0.53 0.47 0.39 0.32 0.28

those differences are individually taken into account, and not aver-
aged over the entire note.

Tests were also performed to determine if using individual fea-
tures is advantageous when compared to classical machine learning
methods, which in general combine several features to perform the
classification. The overall accuracies using support vector machines
(SVM) and k-nearest neighbors (KNN) were, respectively, about 5%
and 7% worse than the results shown in Fig. 1. Both the SVM and
KNN were trained with the same features presented in Section 2.2.
Although the results may vary significantly, it was observed that,
in general, if it is possible to find features capable of separate each
pair of instruments with an accuracy of at least 90%, the use of in-
dividual partials is advantageous. Deeper and more detailed tests to
clarify this matter are planned to be carried out in the near future.

Because the complete system would have to rely on the informa-
tion provided by an onset detector and a fundamental frequency es-
timator, it is useful to analyse how the inclusion of such tools would
influence the results. Regarding the onset detector, three kinds of
errors may occur: a) errors smaller than 10% of the frame length,
which have little impact in the accuracy of the instrument identifi-
cation, because the characteristics of the partials are only slightly
altered; b) large errors, with the estimated onset placed after the ac-
tual position, which have little effect over sustained instruments, but
may cause problems for instruments whose notes decay over time
because the main content of the note may be lost – in those cases,
the instrument identification accuracy drops almost linearly with the
onset error – for example, a 30% forward error in the onset posi-
tion will result in 30% less accurate estimates for instruments with
decaying notes; c) large errors, with estimated onset placed before
the actual position, in which case a part of the signal that does not
contain the new note is considered, and the severeness of the effects
are linked to the number of common partials between the spurious
and actual notes, and to the length of the onset displacement. Ta-
ble 3 shows the effects of the backward onset misplacements (given
in percentage of the actual frame) when the interfering note has 1/3,
1/2 and all partials in common with the note to be classified. The val-
ues given in Table 3 represent the relative accuracy given by Ae/Ai,
where Ae is the accuracy of the method when there is onset mis-
placement, and Ai is the accuracy of the method when the onset is
in the correct position. As can be seen, when there are some partials
that are not affected by the interfering note, the method is able to
compensate in part the problems caused by the onset misplacement.

As stated before, the results showed here refer to the first phase
of development of the algorithm. The next steps of research will deal
with a much greater number of instruments (at least 25), which will
bring some new challenges. The procedure described in this paper
is able to compensate, to a certain degree, the flaws that may oc-
cur when using single features to separate pairs of instruments. As
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1 sax piano violin guitar 2 sax piano violin guitar 3 sax piano violin guitar
sax 89.2 3.3 6.3 1.2 sax 91.0 2.8 5.1 1.1 sax 92.3 2.7 4.3 0.7
piano 1.9 91.1 6.1 0.9 piano 1.7 93.2 4.2 0.9 piano 1.6 94.9 2.6 0.9
violin 6.4 3.2 90.0 0.4 violin 5.0 2.6 92.1 0.3 violin 3.9 2.3 93.8 0.0
guitar 2.0 1.8 2.9 93.3 guitar 1.6 1.5 2.4 94.5 guitar 1.5 1.2 2.1 95.2

4 sax piano violin guitar 5 sax piano violin guitar 6 sax piano violin guitar
sax 93.4 2.4 3.7 0.5 sax 94.3 1.9 3.4 0.4 sax 95.1 1.6 3.3 0.0
piano 1.4 96.0 2.3 0.3 piano 1.1 96.4 2.3 0.2 piano 1.0 96.7 2.1 0.2
violin 3.2 2.1 94.7 0.0 violin 3.1 2.0 94.9 0.0 violin 2.9 2.0 95.1 0.0
guitar 1.1 0.9 1.5 96.5 guitar 0.8 0.5 1.3 97.4 guitar 0.8 0.3 1.2 97.7

Fig. 1. Confusion matrices using the features described in Section 2.2. The numbers in the top-left of the matrices indicate the number of
isolated partials available. The instruments in the first column represent the targets, and those in the first row represent the actual classification.

new instruments are introduced, it is expected that some pairs will be
similar to the point it may not be possible to find a feature able to per-
form the separation accurately. In such cases, the ability of the pair-
wise comparison to compensate isolated inaccuracies will be tested
to the limit. On the other hand, a greater number of instruments
will result in a much greater number of pairs. This means that the
weight of each pair in the final classification will be greatly reduced,
and so will be the influence of problematic pairs. Although it is not
possible to predict how the algorithm will perform under such con-
ditions, good results using the pairwise comparison approach with
a large number of classes have been achieved before in the context
of music genre classification [17]. Although the problems of music
classification and instrument identification are somewhat different,
this previous success provides some evidence that the pairwise ap-
proach may also be successfully extended to the identification of a
large number of instruments.

4. CONCLUSIONS

This paper presented the first results obtained in the development of
a new approach to identify musical instruments in polyphonic mu-
sical signals. It employs a pairwise comparison approach, and the
identification, in its most basic level, is mostly performed in an indi-
vidual partial basis. The winner instrument for a given note is finally
identified after the results are summarized from the partial level to
the note level. Results show that the strategy is robust and accurate.

The next steps of development will include a greater number of
instruments, which will bring new challenges that will test the algo-
rithm to the limit. Future tests will also include signals from other
databases, as a cross-validation between databases may provide fur-
ther significance to the results.
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