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ABSTRACT

The radiodrum is a virtual controller/interface that has ex-
isted in various forms since its initial design at Bell Labo-
ratories in the 1980’s, and it is still being developed. It is a
percussion instrument, while at the same time an abstract
3D gesture/position sensor. There are two main modal-
ities of the instrument that are used by composers and
performers: the first is similar to a percussive interface,
where the performer hits the surface, and the instrument
reports position (x,y,z) and velocity (u) of the hit; thereby
it has 6 degrees of freedom. The other mode, which is
unique to this instrument (at least in the domain of percus-
sive interfaces), is moving the sticks in the space above the
pad, whereby the instrument also reports (x,y,z) position
in space above the surface.

In this paper we describe techniques for identifying
different gestures using the Radio Drum, which could in-
clude signals like a circle or square, or other physically
intuitive gestures, like the pinch-to-zoom metaphor used
on mobile devices such as the iPhone. Two approaches to
gesture analysis are explored. The first one is based on
feature classification using support vector machines and
the second is using Dynamic Time Warping. By allow-
ing users to interact with the system using a complex set
of gestures, we have produced a system that will allow
for a richer vocabulary for composers and performers of
electro-acoustic music. These techniques and vocabulary
are useful not only for this particular instrument, but can
be modified for other 3D sensors.

1. INTRODUCTION

The radiodrum [6] [11] is a virtual controller/interface that
has existed in various forms since its initial design at Bell
Laboratories in the 1980’s, and it is still being developed.
Using capacitive sensing, it can detect the position of two
augmented drum sticks in a space above a receiver an-
tenna. It is a percussion instrument, while at the same
time an abstract 3D gesture/position sensor. Currently,
there are two modes of interaction: the first is similar to a
percussive interface, where the performer hits the surface,
and the instrument reports position (x,y,z) and velocity (u)
of the hit; thereby it has 6 degrees of freedom. We call this
“whack” mode. Note that this mode does not depend on
hitting the surface; it is detected by the change of direction
of the stick and not by any impact as in conventional drum
pads. The other mode, which we call “continuous” mode,

is unique to this instrument (at least in the domain of per-
cussive interfaces). This mode involves moving the sticks
through space above the pad, whereby the instrument also
reports (x,y,z) position in space above the surface at any
desired sampling rate.

In the current work we propose to extend the radio-
drum with a new modality of interaction with a system
that recognizes gestures made by the performer. These
gestures can be as simple as a sweep across the surface
of the radiodrum, or can be as complex as the composer
or performer desires. These gestures are then sent to a sys-
tem the produces sound or image, for example, a Max/MSP
[9] patch. These gestures can either be mapped to actions
that send metadata to the patch, for example, a different
section of a musical piece could be triggered, or can be
mapped directly to sound producing modules. In the case
of a direct mapping to sound, the speed of the gesture it-
self could be mapped to musical properties of the sound.

2. BACKGROUND

The word gesture is a highly overloaded term, and has a
variety of meanings in a number of different fields. Be-
cause of this, the concept of gesture can be viewed as
a boundary object [10], that is, a concept that is at once
adaptable to different viewpoints, but also robust enough
to maintain its identity across different fields. A detailed
examination of gestures can be found in Cadoz and Wan-
derley [2], where they categorize gestures in music as ef-
fective gestures, accompanist gesture and figurative ges-
tures. The gestures detected by our system fall into all
three of these categories. In a review by Overholt [8],
three basic groups of gestural controllers for music are
summarized, which include those inspired by instruments,
augmented instruments and alternative instruments. Our
system is inspired by drums, but can also be viewed as an
augmented drum.

3. RELATED WORK

There have been many approaches to detecting gestures
in the current literature. These include computer vision
based methods, and approaches using accelerometer data.
Early work in the field of gesture recognition employed
the concept of Space-time gestures [4] in which sets of
view models are captured by a Computer Vision system
and are matched to stored gesture patterns using Dynamic
Time Warping (DTW). Although this system was not used



to produce music, it is relevant to the current work because
it uses the same technique of Dynamic Time Warping to
recognize patterns in a multi-dimensional space.

Another more recent paper [3] also uses DTW for the
recognition of a small gesture library, in a non-realtime
setting. It takes hand-arm gestures from a small, prede-
fined vocabulary and uses a DTW engine to align these
gestures in time and also to perform normalization on them.

More relevant to the current work are papers that per-
form gesture recognition on the data from accelerometers,
such as those now commonly found on devices such as
the iPhone and Wii-mote. An early work in this field
was described in “SICIB: An Interactive Music Compo-
sition System Using Body Movements” [7] where a rule
based coupling mechanism linking the position, velocity,
acceleration, curvature, torsion of movements and jumps
of dancers is mapped to intensity and tone in music se-
quences.

Another recent paper relevant to current work describes
uWave[5], an accelerometer-based personalized gesture
based system. This system is unusual in that the system
uses a single prototypical example of each gesture, and
uses DTW to recognize a simple gesture vocabulary con-
taining eight signs, derived from the Nokia gesture alpha-
bet. Akl et al. [1] describe an approach that extends this
work using DTW, affinity propagation and compressive
sensing. In this paper, 18 gestures are recognized, as op-
posed to 8 for the uWave[5] paper. The addition of com-
pressive sensing allows gestures to be reduced to a more
sparse representation that is then matched using DTW.

Another interesting new approach [12] does not use
either DTW or heuristics, but instead uses the machine
learning technique of Support Vector Machines (SVM)
and does gesture recognition with 3D accelerometer data.
In this paper, a system that uses a frame-based descriptor
and a multi-class SVM is described. With frame-based de-
scriptors, instead of using the entire time series, a reduced
representation is used, and in this paper, spectral descrip-
tors calculated by a Fast Fourier Transform are used. This
paper describes how this approach outperforms DTW, Naive
Bayes, C4.5 and Hidden Markov Model (HMM) machine
learning systems.

The approaches described in the previous paragraphs
have positive attributes as well as challenges. Computer
vision based approaches have the advantage that electronic
cameras are now cheap commodity hardware and are eas-
ily available. However, computer vision based approaches
are fundamentally limited by their hardware requirements
of cameras and transmitters and high computational load
[5]. They also have a low acquisition framerate as com-
pared to other approaches.

Accelerometer based approaches have the advantage
that with MEMS technology small cheap solutions are be-
coming common [12] and they provide a high speed and
continuous source of data, ideal for machine learning ap-
proaches. However, accelerometers suffers from abrupt
changes due to hand shaking[1].

In the past three years, we collaborated with Bob Boie,

the original designer of the radiodrum at Bell Labs in the
1980’s, in the design of a new instrument that does not
use MIDI at all. Boie worked with Max Mathews in the
1980’s, and is known for being one of the original de-
signers of capacitive sensing tablets, including very early
versions of trackpads and similar devices. There is consid-
erable confusion in the computer music community about
the radiodrum vs. Radio Drum vs. Radio Baton and the
history thereof. We will not go into detail here, but suffice
it to say that this new instrument is more accurate and sat-
isfying to use in performance that the older versions. At
the moment, we only have one prototype, but we are in
the process of building more instruments.

MIDI works reasonably well for asynchronous data
like drum-hits, but it is badly suited for continuous po-
sition data. The new instrument that Boie designed is en-
tirely analog, and we collect data from it by amplitude-
modulating the analog sensor data in order to take it out
of the DC frequency range. Then we digitize it using an
ordinary audio interface, and this allows us to use almost
any sampling rate so we get very precise temporal data
with no jitter or throughput issues, orders of magnitude
faster than data obtained by computer vision techniques.

Our radiodrum-based approach has the advantage that
absolute position data is transmitted, and these data are in
the form of (x,y,z) three-tuples that have a direct relation
to the position of the sticks in the real world. They also
have the advantage that extremely high rates of data with
excellent time resolution can be obtained. Since the ra-
diodrum is a 3D sensor, we know exactly where the sticks
are at all times, not just when they strike the surface.

4. SYSTEM DESCRIPTION

Our system works by matching gestures to a library of
template gestures, usually provided by the performer or
composer. It then performs real-time matching of gesture
data from the radiodrum in the form of a list of tuples of
x,y,z values and matches this stream of data to the tem-
plate library, returning the matching template gesture.

The mapping of gestures to sounds is in the domain
of the composer, who in our system would be responsible
for creating this mapping of gestures to sounds. To use
our system, the composer and performer would define an
alphabet of gestures that will be used.

During the performance of the piece of music, when
the musician wants a gesture to be recognized, they then
push a foot switch which activates the gesture recognition
system, and then execute a gesture. A similarity matrix
between this gesture and all examples of all gestures in
the system is then calculated. A similarity matrix of two
examples of the gesture for “A” is shown in Figure 1.

5. RESULTS

We have implemented two independent systems for doing
gesture recognition of radiodrum data. The first of these is
a system based on Dynamic Time Warping (DTW) [4] and
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Figure 1. Similarity matrix for two examples of the sign
“A” along with the best path as determined by Dynamic
Time Warping shown in red.

the second is a system based on a frame based implemen-
tation using a Support Vector Machine (SVM) machine
learning classifier.

5.1. Dynamic Time Warping

In our DTW implementation, we take the X and Y pairs
of a performed gesture and compare each of the X and Y
time series to all the examples of the gesture in our ges-
ture alphabet. Specifically, we first take the X time series
of the performed gesture and calculate a similarity matrix
between all points of this gesture and each gesture in our
database. We then run the DTW algorithm on this simi-
larity matrix and find the cost of the path as determined
by the DTW algorithm, where a lower cost path indicates
a more likely gesture match. We then repeat this for the
Y time series and sum the scores for the X and Y values.
The lowest cost path over all the gestures in our alphabet
is then returned as the most likely match.

We performed a series of experiments to evaluate the
performance of the DTW algorithm. For the first of these,
we compared three very distinct signs, those of “A”, “K”
and “C” as used in the Palm Pilot graffiti alphabet. Exem-
plars of these three letters are shown in Figure 2. We took
8 to 10 examples of each of these letters and performed
DTW against all 30 examples in the gesture database. We
then calculated the precision and recall of the top 8 re-
turned gestures. The results of this experiment are shown
in Table 1. As one can see, the precision for each of these
is high, for A and K the precision is 1, which means all
of the 8 returned gestures matched the query gesture cor-
rectly. For all three examples, the recall was also high, and
varied between 0.727 and 0.888. In addition, for all three
gestures the top result (Top-1) was correct in all cases, this
is the most important measure because it matches more
closely the behaviour of the system in a performance im-
plementation.

In doing these experiments we noticed that we can get

a higher recall and consequently a higher F-Measure if
we specify a cut-off threshold for DTW score, since this
way we eliminate more irrelevant gestures in the retrieved
gestures set. In order to investigate this further, first we
found the optimum threshold for a training set and then
to evaluate the system with obtained thresholds, we tested
the system on the testing set and the result is shown in
Table 2 2.

5.2. Support Vector Machine

In order to extract features for each gesture, first, we di-
vided each gesture into N equal sized segments. Then
frames are formed by putting two adjacent segments (each
with the length Ls = L/(N)) together and in a way that
every two adjacent frame have a segment in common. In
other words, the frame i consists of the segments i and
segment i+ 1. So, we have N− 1 frames each with the
length 2 ∗ Ls and each frame consists of two time series
axis xt and yt . The feature vector of each gesture consists
of the feature vectors of all of its frames. So if the feature
vector of the frame i is called fi then the feature vector of
each gesture is: F = f0 + ...+ fN−1. So we need to calcu-
late the feature vector of each frame. In order to do that
we input the x and y axis into FFT function separately,
and in the frequency domain, we calculated the mean and
the energy feature:

Mean = µT,K = t0
T,K0

Energy = εT,k =
∑

Ls,2−1
n=1 |tn

T,k|2

|Ls,2−1|
Where the vector t is the output of the FFT function,

T = x, y and k = 0, ...,N−1. After calculating the fea-
tures for all the frames, we end up with the feature vector
of the gesture:

τ = (µT,K ,εT,k)

Now the gesture i can be represented by (gi,τi) and
fed to the binary SVM to train the classifier to recognize
the new features.

In this experiment, we first trained the classifier with
the training set that includes 7 samples of the gesture “A”
and 7 samples of the gesture “B”. Then in order to evaluate
the model, we used a test set including 3 samples of the
gesture “A” and 3 samples of the gesture “B”.

We repeated this operation for 10 different number of
Ns, and three pairs of gestures (a,b), (c,o) and (k,x). The
results are shown in Table 3. From this table it can be seen
that by choosing the right frame size of the SVM classifier
it is possible for this SVM method to outperform the DTW
method.

6. DISCUSSION

Our system is designed for a professional percussionist
for live performances, and thus time and care can be spent



Gesture Precision Recall Top-1
A 1.0 0.888 9/9
B 1.0 1.0 10/10
K 1.0 0.727 10/10
C 0.792 0.704 8/8
E 0.818 0.595 10/10
O 1.0 0.889 10/10

Table 1. Precision and Recall for three different gestures

Threshold F-measure F-measure F-measure
“A” “K” “O ”

0.020 0.966 0.927 0.982
0.030 0.974 0.949 0.988
0.031 0.974 0.951 0.989
0.036 0.967 0.952 0.990
0.042 0.952 0.947 0.992
0.050 0.921 0.929 0.986

Table 2. F-measure for 3 different signs at a variety of
training cutoff levels

Frames Precision Precision Precision
A,B C,O K,E

2 1.0 0.75 1.0
4 1.0 0.66 1.0
6 0.75 1.0 1.0
8 1.0 1.0 1.0
10 1.0 1.0 1.0
DTW 1.0 0.972 0.983

Table 3. Average Precision and Recall when using the
Support Vector Machine testing/training approach to ges-
ture recognition. Shown in the last line of the table are the
average results for the DTW algorithm.

Figure 2. Exemplars of the gestures “A”, “C” and “K” as
X,Y pairs of data, with the Z axis flattened to the plane of
the page.

in optimizing the dictionary of signs. This would also be
dependent on the piece of music and the importance of
distinguishing similar signs.

Data from an accelerometer suffers from abrupt changes
due to hand shaking [1]. In our case, the user moves a
stick through space, and the added mass of the stick helps
to mitigate this. In addition, this system is intended to
be used by experienced percussionists, who are trained to
have good hand coordination when using percussion mal-
lets or sticks, this fact is indirectly utilized by our system
because we use actual drum sticks that are augmented by

the addition of a small antenna.
Musicians are specifically trained to produce repeat-

able actions in order to create sounds. By using a natural
interface for percussionists, that of a drum stick, we lever-
age the large amounts of training that these musicians un-
dergo.
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