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ABSTRACT

As digital music and sound collections increase in size
there has been a lot of work in developing novel interfaces
for browsing them. Many of these interfaces rely on au-
tomatic content analysis techniques to create representa-
tions that reflect similarities between the music pieces or
sounds in the collection. Representations in 3D have the
potential to convey more information but can be difficult
to navigate using the traditional ways of providing input to
a computer such as a keyboard and mouse. Utilizing sen-
sors capable of sensing motion in 3-dimensions, we pro-
pose a new system for browsing music in augmented re-
ality. Our system places audio files in a virtual cube. The
placement of the files into the cube is realized through the
use of audio feature extraction and self-organizing maps
(SOMs). The system is controlled using gestures, and
sound spatialization is utilized to provide auditory cues
about the topography of the music or sound collection.

1. INTRODUCTION

Advances in technology have drastically changed how we
interact with music. The increasing capabilities of per-
sonal computaers have allowed listeners access to digital
music collections of significant size. As the number of
available songs increases, searching and browsing through
this music becomes difficult. The conventional hierar-
chy of “Artist-Album-Track” and the spreadsheet inter-
face of music software such as iTunes ared still the domi-
nant ways of organizing and navigating digital music col-
lections. While this method is effective for finding a spe-
cific song when one knows exactly what they are looking
for, it does not allow for effective browsing through mu-
sic collections when there is no specific target song. To
address this issue, browsing interfaces that are based on
organizing music tracks spatially based on their automat-
ically computed similarity have been proposed. Content-
based browsing has some advantages over traditional sys-
tems, many of which stem from the fact that users can
browse music aurally, and no longer require a pictorial or
textual representation. By removing the need for a key-
word representation, we can possibly access music that
has no associated text, or text available only in a differ-
ent language. This type of audio browsing can also be
useful for music creators or videogame audio designers
who need to sort through large collections of sound clips

or sound effects. Accessing music information aurally
makes sense intuitively, and even allows people with vi-
sion or motion disabilities improved access to the world
of music [18]. We describe a novel interface for brows-
ing music and sound collections based on automatically
computed similarity, spatially arranging the audio files in
3D using self-organizing maps (SOMs), and browsing the
sonified space using 3D gestural controllers.

2. RELATED WORK

Novel interfaces for browsing music began to appear about
ten years ago with SOMs being one of the first algorithms
to be used for music clustering and visualization [4]. The
early development of applications demonstrating these con-
cepts such as the Sonic Browser [9], Marsyas 3D [17]
and Musescape [15] was fueled by advances in the field
of Music Information Retrieval (MIR). Each system uses
direct sonification rather than button triggered playback as
a means of music browsing to create a continuous stream
of sound while navigating the music space. In Pampalk,
Dixon and Widmer [12] and Knees et al [5], a visual-
ization of the organized music collection is proposed in
which the clustered songs are represented as islands, where
the height of each island is relative to the number of songs
in each cluster, and the terrain itself is based on a 2D
SOM. In each of these applications, navigation is achieved
using a mouse or joystick. In Ness et al. [11], the au-
thors explored the use of various controllers for interfac-
ing with self-organized music collections. These inter-
faces include multi-touch smartphones, motion trackers
like the wiimote, and web-based applications. While ad-
vances in self-organized browsing progressed, the use of
augmented reality in musical applications was being de-
veloped [13]. Often, augmented reality (AR) is under-
stood be related to display technologies. However, AR
can be applied to any senses, including hearing. In Azuma
et al. [1], a mixed-reality continuum is presented, with
Augmented reality defined as virtual objects added to a
real space. Another good example of early combinations
of self-organized music collections and augmented virtual
spaces is the ”Search Inside the Music” program [7]. This
application allows users to browse through a virtual 3D
space of songs and also showed the songs on each album
visualized with the cover art. The key contribution of this
work is the utilization of gestural 3D control for interact-
ing with a 3D self-organized map of music.



3. ORGANIZING MUSIC IN A 3D SPACE

One of the main goals of Music Information Retrival is to
to approximately model the concept of ”similarity” in mu-
sic. Similarity can be determined by using manually as-
signed metadata, however MIR often also focuses on ex-
tracting features directly from the audio signal. A variety
of methods have been proposed in self-organized music
browsers to project high-dimensional feature data, such as
Principle Component Analysis [3]. Although this system
could be implemented with other reduction methods, the
most common approach to organizing music collections is
that of the Self Organizing Map [6]. In this case, a set of
features is extracted from an audio file, producing a single
high-dimensional feature vector representing each song.
The feature vector corresponding to a piece of music or a
sound is then then mapped to a corresponding set of co-
ordinates in a discrete grid. Feature vectors from similar
audio files will be mapped either to the same grid location
or neighbouring ones. The resulting map reflects both an
organization of the data into clusters as well as a mapping
that preserves the topology of the original feature space.

The goal of feature extraction is to produce a vector
of numbers known as as features that represent a piece of
audio. By choosing how the vectors are computed, we are
able to come up with numbers that are similar when they
correspond to perceptually similar sounds or music tracks.
As described in [16], we extract features such as Flux,
Rolloff, MFCCs (Mel-Frequency Cepstral Coefficients),
pitch histograms and rhythm-based features. These audio
features are extracted for very short periods of audio (usu-
ally under 25ms). An entire song would therefore have
an array of numbers for each feature, depicting how these
features change over time. To model large collections of
songs, this sequence of feature vectors representing each
song needs to be summarized into a single feature vec-
tor characterizing the music at the song level. To shorten
the length of our feature vectors and simplify the calcula-
tions each sequence of a particular feature is summarized
down to two single values: the mean and standard devia-
tion. That way both the central tendency of the feature and
the deviation from it are modelled. Finally the features
are normalized to have values between 0 and 1 across the
dataset.

Vk = [v0,v1, ...,vN ] (1)

The resulting feature vector V is calculated for each audio
file in our collection, and is given in Equation 1 where k
is the song index, n is the number of features, and vn is a
normalized feature.

Most of the previous work in the area of self-organized
music browsing involves SOMs that lie on a 2D grid. This
has a nice corespondance with the majority of human-
computer interfaces, like the mouse or touch screen tablets,
which allow the user to navigate a 2D space. With the re-
cent popularity of 3D Gestural controllers like the Kinect,
exploring a 3D SOM is a natural extension of the current
models. Luckily, the algorithm used to create 2D self-
organizing maps is easily modified for any number of di-

Figure 1. A 3D self organizing map before (a) and after
(b) training with an 8-color dataset

mensions.
The self-organizing map is a type of artificial neu-

ral network, meaning that it is inspired by interactions
between biological neurons. Our neural network begins
with a set of objects referred to as nodes. Each node has
an associated weight vector, W, as shown in equation 2,
and spatial placement P = [x,y,z]. Although the nodes
in figure 1 have been spaced evenly within a cube, these
nodes could hypothetically be placed in other, more arbi-
trary formations. Initially, the weights of each node are
set randomly. As the organization process progresses, the
weights of each node will begin to align more closely with
their neighbours and also more closely with our song fea-
tures. This process is depicted in Figure 1, where each
node has weight vector visualized as a colour. Initially, the
weights shown in this figure are random (a). As the SOM
is trained with 8 distinct colours, the weights of each node
become organized (b).

Wk = [w0,w1, ...,wN ] (2)

The training process involves selecting a song to train the
map with and determining which node represents that song
the best. Similarity between songs and nodes is calcu-
lated as the euclidian distance between the song features
and node weights, as shown in Equation 3. The small-
est distance corresponds to best-matching node or best-
matching unit (BMU). Now each node in the vicinity of
the BMU is updated with a new set of weights, adjusted
to become more like our BMU. Equation 4 described how
this adjustment is made. V(t) is the feature vector, W(t) is
the weights vector, and L(t) is a learning function, which
decays over time and allows the organizing algorithm to
settle.

d =

√
N

∑
i=0

(Vi −Wi)
2 (3)

W (t +1) =W (t)+L(t)(V (t)−W (t)) (4)

By iteratively training our SOM, our resulting nodes
reside in a space where nearby nodes have similar weight
vectors. Each song is mapped to the most similar node, re-
sulting in a set of songs residing in a space where nearby
songs have similar feature vectors. In Figure 2, you can
see that songs from similar genres will tend to be near one
another. Note that the self-organizing map algorithm has



Figure 2. 3D SOM with two genres and user-controlled
cursor

no knowledge of the genre labels and their spatial orga-
nization is an emergent property of the mapping and the
underlying audio features.

4. NAVIGATING THROUGH THE COLLECTION

Once our songs have been organized into a virtual 3D
space, user interaction becomes a significant considera-
tion. Since the use of 3D sensors was one of the primary
motivations behind this work, our focus has been on using
sensors capable of reporting gesturally-produced position
data for two or more points. How we go about using that
captured motion is another point of discussion, and we
present here only a few of the many possible ideas for ex-
panding and refining user-interaction. Previous work has
been done into user interaction with 2D visualizations for
music browsing [8], and similar same concepts can be ap-
plied to the 3D scenario. We utilize two controllers: the
radiodrum and the Kinect.

The radiodrum[2] is a controller with a long history
known mostly in the computer music community. It is
a music controller that rapidly tracks the position of the
tips of two drumsticks in 3D space, and has been used to
navigate and fade between two pieces of music in self-
organizing maps [10]. The recent popularity of the XBox
Kinect, an infrared 3D motion sensing device, has been a
catalyst into further researching intuitive intelligent uses
of gestural control. The Kinect provides a type of sensing
in some ways similar to that of the radiodrum. It enables
tracking of the hands and body of a user and does not re-
quire any hardware to be touched by the user. The radio-
drum has much higher temporal precision and therefore
feels more interactive. However it has the disadvantages
that it is not widely available, is expensive and does not
have as much spatial resolution as the Kinect. We believe
that for this application scenario the Kinect is the better
choice as it is mass produced, cheap, and enables very
natural interaction. On the other hand the radiodrum has
helped us understand better the timing requirements for
such as an interface. Using our sensors for control data
we want to sonify the organized sounds as we move our
3D cursors about. The simplest way to do this is to simply
play back songs from whichever node is currently closest
from one cursor, and only one song plays back at a time.

Figure 3. Implementation Diagram

The other hand could then be free to perform other types
of control gestures. Another content-aware browser [14]
presented a different method for playing back songs. In
this case, the user can manipulate the centre point and ra-
dius of an encompassing circle, and any songs within the
circle will play simultaneously. To modify this method
for our purposes, the two cursors were made to act as the
bounding points for a variable-size sphere. Nodes with
positions within the user-controlled sphere are sonified,
with a gain relative to their nearness to the center of the
sphere. Once the cursor data from the sensors is mapped
to playback in the auditory representation of our sound
collection we need a richer gestural language to enhance
the user control. For example, once music exploration is
complete and the user has found a song they would like
to listen to, they will want to select a song to listen to.
Our simple way of implementing this functionality is to
use timers, so that if we preview a song for longer than
a set duration it will trigger song selection. Each node
is sonified with a loudness based on its position relative
to the cursor. By creating listening points that surround
our cursor, we are able to perform multi-channel panning.
As shown in figure 2, two smaller points are situated on
either side of the user’s current position, representing the
the two listening points required for a stereo reproduction.
This spatialization gives an aural sense of space and direc-
tion for navigation of our music collection.

5. IMPLEMENTATION

The hardware required for this music browser is simple:
a controller, a computer, and a sound system. Figure 3
demonstrates the application design and interactions be-
tween the devices and software libraries. The C++ project
uses a creative toolbox called openFrameworks, which al-
lows easy access to other libraries like openGL to create
visualizations, Marsyas for audio feature extraction, and
openNI for sensor communications. The SOM data file is
a small text file containing a list of songs with their ac-
companying metadata and SOM position.



6. FUTURE WORK

Future work will involve performing user evaluations that
could help to answer questions about browsing music with
this system. Three-dimensional SOMs have the possibil-
ity to represent richer topological spaces, reflecting more
accurately the relationship between songs in our music
collection. Furthermore, using 3D gesture-based controllers
to navigate a 3D space would seem to offer advantages
over using a joystick or other 2D controllers. However,
without the proper evaluation provided by a user study
any claims we can make are purely speculative. Further
evaluation of this system is required, in which the time
it takes to complete tasks of browsing for certain music
will be measured. Quantitative comparisons between 3D
and 2D SOMs can also be performed, where the distance
between similar songs are compared for the same set of
songss.

7. SUMMARY

The self-organized map has become a popular method for
organizing songs based on similarity. This type of mu-
sic browser not only reflects the way that how we interact
with music is changing, it also reflects how our interaction
with technology and computers is changing. By expand-
ing previous work with self-organized music collections
and adding a third dimension, it is possible to convey ad-
ditional information and browse extra songs. Addition-
ally, navigating this type of map is a good example of the
advantages 3D gestural sensors like the radiodrum and the
Kinect have in specific control contexts and the more nat-
ural interaction they enable.
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