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ABSTRACT

Many musical genres and styles are characterized by distinct
representative rhythmic patterns. In most automatic genre
classification systems global statistical features based on tim-
bral dynamics such as Mel-Frequency Cepstral Coefficients
(MFCC) are utilized but so far rhythmic information has not
so effectively been used. In order to extract bar-long unit
rhythmic patterns for a music collection we propose a clus-
tering method based on one-pass dynamic programming and
k-means clustering. After extracting the fundamental rhyth-
mic patterns for each style/genre a pattern occurrence his-
togram is calculated and used as a feature vector for super-
vised learning. Experimental results show that the automati-
cally calculated rhythmic pattern information can be used to
effectively classify musical genre/style and improve upon cur-
rent approaches based on timbral features.

Index Terms— Audio genre classification, Percussive
sound, Dynamic programming, Pattern clustering method,
Feature extraction

1. INTRODUCTION

Interest in music information retrieval (MIR) has recently
surged due to the increasing size of digital music collections
available on computers and portable music players. Auto-
matic genre classification from audio is a traditional topic
of MIR and provides a structured way of evaluating new
representations of musical content. In this task, not only
instrumental information but also a rhythmic information is
thought to be important. For instance, the distinction between
samba and tango exists primarily in their bar-long rhythmic
patterns. If such representative unit rhythmic patterns in mu-
sic can be identified automatically they can potentially be
used to automatically characterize different genres and styles
of music directly from audio signals.

In previous research, timbral features, rhythmic fea-
tures and pitch features have been used for audio genre
classification[1]. However the rhythmic features were based
on overall statistics of periodicities and did not represent di-

rectly temporal information. Research more closely related to
our are work with rhythmic patterns includes Dixon [2] which
extract a periodical pattern from acoustic signals heuristically
and Peeters [3] which extracts features based on the peri-
odicity of the spectrum. These approaches can successfully
discriminate styles such samba or tango primarily based on
rhythmic information.

In this paper, we describe an approach for extracting unit
rhythmic patterns of percussive sounds from a number of au-
dio tracks and propose a pattern occurrence histogram as a
feature for genre classification. Finally, the effectiveness of
the proposed percussive pattern information for genre classi-
fication is verified experimentally.

2. RHYTHM PATTERN CLUSTERING

2.1. Challenges in Rhythm Pattern Clustering

Bar-long percussive patterns are frequently common and
characteristic of a particular genre or style. Automatically
detecting these patterns is a “chicken-and-egg” problem in
that sets of bar-long unit rhythm patterns may be determined
only after their corresponding unit boundaries in the music
pieces are given, and vice versa. This is complicated by tempo
fluctuations which might cause the unit pattern to stretch or
shrink. An additional problem is that pieces comprise of
both harmonic and percussive sounds especially in modern
popular music. Harmonic sounds sometimes disturb rhythm
analysis based on the spectrogram. In the next subsections,
we describe our approach to solving these challenges.

2.2. Emphasizing Percussive Components

Generally, harmonic and percussive sounds are mixed in the
observed spectrograms of audio pieces. Therefore, in order
to perform percussive pattern analysis it is useful to sepa-
rate these components. We utilize the method described in
Ono [4] that is based on the difference of general timbral fea-
tures. By looking at the left figure in Fig. 1, a typical instance
of spectrogram, one can observe that harmonic components



Fig. 1. The original spectrogram (left) and the percussion-
emphasized spectrogram (right) of a popular music piece
(RWC-MDB-G-2001 No.6[5]).

tend to be continuous along the temporal axis in particular fre-
quencies. On the other hand, percussive components tend to
be continuous along the frequency axis and temporally short.
Mask functions for separating the two components (harmonic
and percussive) are calculated following a Maximum a poste-
riori (MAP) estimation approach using the Expectation Max-
imization (EM) algorithm. Applying this algorithm to the
shown spectrogram, harmonic and percussive components are
separated (percussive components are shown in the right of
Fig. 1).

2.3. Iterative Update of Percussive Pattern Cluster and
Segmentation

If the true set of unit patterns are given as templates, the prob-
lem of unit segmentation is analogous to the problem of con-
tinuous speech recognition where the one-pass dynamic pro-
gramming (DP) algorithm [6] can be used to find the sequence
of uttered words. In addition because dynamic programming
is flexible in terms of time alignment this also simultaneously
deals with the problem of tempo fluctuation during a perfor-
mance. On the other hand, if the boundaries are given ini-
tially, the percussive patterns can be easily clustered byk-
means clustering and the set of unit patterns can be calcu-
lated. We have proposed an approach to solve these problems
iteratively in [7].

First, a set of initial seed templates is provided such as
typical percussive spectrogram patterns in modern music.
Then, according to the initial seed templates, the alignment
is calculated using a one-pass DP algorithm and the opti-
mal segmentation of the input spectral patterns is calculated.
Based on the calculated alignment and an approach similar to
k-means clustering the input templates are adapted by aver-
aging segments that belong to the same cluster. By iterating
these two steps, the total summation of distance cost gradu-
ally converges. Fig. 2 illustrates the flow of this algorithm.

Mathematically, the template updating and convergence
proof are as follows: Considering a probabilistic model where
the output probability of the spectrumrx with sizeN from the
spectrum of the framei in templatem is defined as:
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Fig. 2. The flow diagram of the system.

whereem,i,x = (µm,i − rx) andΣm,i is a diagonal covari-
ance matrix of the timei and the templatem, logarithmic
likelihoodsln(pm,i(rx)) can be multiplied by some weightw
and summed up one after another according to one-pass DP
algorithm.

The alignment calculated above gives a correspondence
between the spectrumrx(a) of the time indexx(a) and the
template spectrumµm(a),i(a) of the time indexi = i(a) in
templatem = m(a). Therefore, the distance cost in one-pass
DP algorithm can be written as

DA = − 1
2

( A∑

a=1

(
Y log(2π) + log |Σm(a),i(a)|

)
· w(a)

+
A∑

a=1

em,i,x(a)T Σ−1
m(a),i(a)em,i,x(a) · w(a)

)
(2)

whereem,i,x(a) = (µm(a),i(a) − rx(a)).
When the template patterns are updated, the update rules

are solved based on the maximum likelihood estimation. The
updated template spectrum is written as

µ̂m,i =

∑
a∈Am,i

rx(a) · w(a)
∑

a∈Am,i
w(a)

(3)

whereAm,i = {a|m(a) = m, i(a) = i}, and the covariance
matrix of it is written as

Σ̂m,i =

∑
a∈Am,i

em,i,x(a)em,i,x(a)t · w(a)
∑

a∈Am,i
w(a)

. (4)

Thus, the total likelihood calculated after this update,D′
A

satisfies

D′
A ≥ D̂A = max

µ,Σ
DA ≥ DA (5)

and this iterative update never reduces the total likelihood, so
the convergence is guaranteed.

When used in the context of genre classification the above
algorithm needs to be adapted so that it can be applied to a



collection of music pieces rather than a single one. In this
case the same set of templates is used for the one-pass DP
alignment calculation for all the pieces. In addition all corre-
sponding segments of all music pieces are collected and aver-
aged in the template update phase. That way a certain number
of representative percussive templates common to a particular
genre or style can be identified.

3. RHYTHM PATTERN FEATURE EXTRACTION

3.1. Genre Classification via Percussive Pattern Cluster-
ing

Ideally percussive patterns for a particular genre or style
would be fixed and would be automatically extracted per-
fectly. If that was the case then automatic genre classification
could be performed simply by looking at which particu-
lar rhythm patterns are used in a music piece. However in
practice there is no guarantee that patterns are fixed for a
particular genre/style or that their automatic extraction will
be perfect. Therefore in many cases the percussive patterns of
a particular music piece will belong to more than one genre.
To address these problems simultaneously we utilize a pat-
tern occurrence histogram representation followed statistical
machine learning to automatically classify music genre. Su-
pervised learning classifiers such as Support Vector Machines
(SVM)[8] can be used for this purpose.

One possible way to extract feature vector is count up
which percussive pattern templates are contained in a song
and calculating the genre pattern occurrence histogram, simi-
larly to Latent Semantic Indexing approach [9].

If M percussive pattern templates are learned from genre
g (g = 1, . . . , G), an alignment can be calculated using dy-
namic programming to calculate the templatesTm,g that exist
in the songs. Then, the occurrence number of the patterns
from genreg can be simply calculated by summation as fol-
lows:

cs,g =
M∑

m=1

cs,m,g (6)

wherecs,m,g is the number of the templateTm,g in the songs,
and the eventualG dimensional pattern occurrence histogram
features vectorx of songs can be written as

xg =
cs,g

Ns
(7)

which is normalized byNs, the number of measure in the
songs.

4. PROCEDURAL SUMMARY OF THE
ALGORITHM

The overall algorithm can be summarized as follows:

1. Emphasis of percussive components using Ono’s method
2. Initial templates are provided

Fig. 3. Example of learned 10 common percussive spectro-
gram patterns (Blues)

3. The optimal segmentation is calculated using one-pass
DP

4. The templates patterns are updated with k-means like
clustering

5. Steps 3 and 4 are iterated until convergence
6. The alignment from the learned templates of all genres

is calculated using one-pass DP algorithm
7. The pattern occurrence histogram is used as a feature

vector characterizing a music pieces
8. Classification into genres is performed using a machine

learning technique

5. EXPERIMENTAL RESULTS

5.1. Dataset

Experiments with the proposed algorithms were conducted on
both the GTZAN dataset [1] as well as a dataset of ballroom
music [10]. The former had 10 genres: blues, classical, coun-
try, disco, hiphop, jazz, metal, pop, reggae, and rock. The lat-
ter contains 8 dance styles: chacha, foxtrot, quickstep, rumba,
samba, tango, viennesewaltz, and waltz. Both of the datasets
have 100 songs per genre all of which are single-channel and
sampled at 22.05kHz.

5.2. Template learning and feature extraction

First, common percussive pattern templates were learned us-
ing the proposed algorithm for each genre. The proposed al-
gorithm was implemented using the audio processing frame-
work, Marsyas1 which is open source software with specific
emphasis on Music Information Retrieval (MIR) [11].

To ensure that the template learning didn’t become acci-
dentally good for classification, we divided each dataset into
two parts and obtained two sets of templates for each genre.
In this experiment, 10 templates were learned from each par-
ticular genre or dance style, and the number of iterations was
fixed to 30 times because it was enough to converge. The
example of learned templates of blues is shown in Fig. 3.

After template learning there are a total of 100 templates
for the GTZAN dataset and 80 templates for the ballroom

1http://marsyas.sness.net/



dancing dataset. Using the one-pass DP algorithm all seg-
ments are labeled and the pattern occurrence histograms from
Eq. 7 are calculated. That way 10 dimensional and 8 dimen-
sional feature vectors are obtained in each case.

5.3. Classification results

To train a classifier in feature space, the “Weka” machine
learning toolkit [12] was employed. All the results shown
are based on 10-fold cross-validation using a linear SVM as a
classifier. To generalize the feature extraction part, we divided
the datasets into two parts, though, in 10-fold cross-validation
to generalize the classification, the labeled data was split into
10 folds and each fold is used once for testing with the re-
maining 9 folds used for training the classifier to generalize
the classification. The results using only the rhythmic pattern
features (10 dimensional or 8 dimensional vector) are shown
in Table 1. As can be seen the proposed features have enough
information for genre classification because this classification
accuracy is significantly above the baselines of random clas-
sification, which is the naive classification based on the most
likely genre/style based on the number of instance.

An existing state-of-the-art genre classification system
which uses 68 dimensional timbral features like MFCC and
spectrum centroids proposed by Tzanetakis was used for
comparison. The system performed well on several au-
dio classification tasks in MIREX 2008 [13]. This system
achieved72.4% on the GTZAN dataset and57.6% on the
ballroom dataset. Songs in the ballroom dataset tend to have
similar timbral characteristics and therefore rhythm patterns
are more significant for recognizing dance style.

Merging the timbral features and rhythmic features, the
classification accuracies shown in Table 2 were obtained.
These results are higher than existing genre classification
systems that rely on timbral information and verify the effec-
tiveness of the proposed percussive patterns.

6. CONCLUSIONS

We discussed an approach to extracting common percussive
patterns for particular genres/styles and using pattern occur-
rence histograms as features for genre classification. We used
Ono’s method to extract percussive components from audio
signals and clustered percussive patterns using a combination
of one-pass DP andk-means clustering algorithm. Experi-
ments over music pieces from various genres confirmed that
the proposed algorithm can improve the accuracy of classifi-
cation systems based on timbral information.

Future work includes usingn-gram model approach
rather than only looking at the uni-gram histogram. In addi-
tion more experiments with the parameters of the algorithms
such as the number of templates to be learned need to be
conducted. Other features like bass-line pattern can be used
for genre classification as well.

Table 1. Genre classification accuracy using only rhythmic
pattern features

Features GTZAN Ballroom
Baseline (random classifier)) 10.0% 12.5%

Rhythmic (from template set #1) 43.6% 54.0%
Rhythmic (from template set #2) 42.3% 55.1%

Table 2. Genre classification accuracy using merged features
with existing timbral features

Features GTZAN Ballroom
Existing (Timbre) 72.4% 57.6%

Merged (from template set #1) 76.1% 70.1%
Merged (from template set #2) 76.2% 69.1%

7. REFERENCES

[1] G. Tzanetakis and P. Cook, “Musical genre classification of
audio signals,” IEEE Transaction on Speech and Audio Pro-
cessing, vol. 10, no. 5, pp. 293–302, 2002.

[2] S. Dixon, F. Guyon, and G. Widmer, “Towards characterization
of music via rhythmic patterns,” inProc. of the 5th Int. Conf.
on Music Information Retrieval, 2004, pp. 509–516.

[3] G. Peeters, “Rhythm classification using spectral rhythm pat-
terns,” in Proc. of the 6th Int. Conf. on Music Information
Retrieval, September 2005, pp. 644–647.

[4] N. Ono, K. Miyamoto, H. Kameoka, and S. Sagayama, “A real-
time equalizer of harmonic and percussive componets in music
signals,” inProc. of the 9th Int. Conf. on Music Information
Retrieval, September 2008, pp. 139–144.

[5] M. Goto, H. Hashiguchi, T. Nishimura, and R. Oka, “Rwc
music database: Music genre database and musical instrument
sound database,” inProc. of the 4th Int. Conf. on Music Infor-
mation Retrieval, October 2003, pp. 229–230.

[6] H. Ney, “The use of a one-stage dynamic programming algo-
rithm for connected word recognition,” inInt. Conf. on Acoust.,
Speech, Signal Processing, 1984, pp. 263–271.

[7] E. Tsunoo, N. Ono, and S. Sagayama, “Rhythm map: Extrac-
tion of unit rhythmic patterns and analysis of rhythmic struc-
ture from music acoustic signals,” inAccepted for ICASSP,
2009.

[8] V. Vapnik, The Nature of Statistical Learning Theory,
Springer-Verlag, 1995.

[9] S. Deerwester, S. Dumais, G. Furnas, T. Landauer, and
R. Harshman, “Indexing by latent semantic analysis,”Jour-
nal of the American Society for Information Science, vol. 41,
no. 6, pp. 391–407, 1990.

[10] “Ballroomdancers.com,” http://www.ballroomdancers.com/.

[11] G. Tzanetakis,Marsyas-0.2: A Case Study in Implementing
Music Information Retrieval System, chapter 2, pp. 31 – 49,
Idea Group Reference, 2007, Shen, Shepherd, Cui, Liu (eds).

[12] I. Witten and E. Frank, Data Mining: Practical Machine
Learning Tools and Techniques, Morgan Kaufmann, 2005.

[13] “Mirex 2008,” http://www.music-ir.org/mirex/2008/.


