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ABSTRACT

In the past few years there has been a growing interest in mu-
sic robotics. Robotic instruments that generate sound acous-
tically using actuators have been increasingly developed and
used in performances and compositions over the past 10
years. Although such devices can be very sophisticated me-
chanically, in most cases they are passive devices that di-
rectly respond to control messages from a computer. In the
few cases where more sophisticated control and feedback is
employed it is in the form of simple mappings with little mu-
sical understanding. Several techniques for extracting mu-
sical information have been proposed in the field of music
information retrieval. In most cases the focus has been the
batch processing of large audio collections rather than real
time performance understanding. In this paper we describe
how such techniques can be adapted to deal with some of the
practical problems we have experienced in our own work
with music robotics. Of particular importance is the idea
of self-awareness or proprioception in which the robot(s)
adapt their behavior based on understanding the connection
between their actions and sound generation through listen-
ing. More specifically we describe techniques for solving
the following problems: 1) controller mapping 2) velocity
calibration, and 3) gesture recognition.

1. INTRODUCTION

There is a long history of mechanical devices that generate
acoustic sounds without direct human interaction starting
from mechanical birds in antiquity to sophisticated player
pianos in the early 19th century that could perform arbi-
trary scores written in piano roll notation. Using computers
to control such devices has opened up new possibilities in
terms of flexibility and control while retaining the richness
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of the acoustic sound associated with actual musical instru-
ments. The terms music robots or music robotic instruments
have been used to describe such devices [6].

We believe these new robotic instruments have a legiti-
mate place with potential to become part of an embedded
conventional musical practice, not just a research curios-
ity. While musical-robotics might seem niche and esoteric
at this point [2], historic innovations such as monophonic
to polyphonic music, electrical amplification of the guitar,
or computers in the recording studio all brought skepticism,
but eventually became mainstay practices.

Although such music robots have been used in perfor-
mance of both composed and improvised music as well as
with or without human performers sharing the stage, they
are essentially passive output devices that receive control
messages and in response actuate sound producing mecha-
nisms. Their control is typically handled by software written
specifically for each piece by the composer/performer.

Musicians through training acquire a body of musical
concepts commonly known as musicianship. Machine mu-
sicianship [9] refers to the technology of implementing mu-
sical process such as segmentation, pattern processing and
interactive improvisation in computer programs. The ma-
jority of existing work in this area has focused on sym-
bolic digital representations of music, typically MIDI. The
growing research body of music information retrieval, espe-
cially audio-based, can provide the necessary audio signal
processing and machine learning techniques to develop ma-
chine musicianship involving audio signals.

The typical architecture of interactive music robots is that
the control software receives symbolic messages based on
what the other performers (robotic or human) are playing
as well as messages from some kind of score for the piece.
It then sends control messages to the robot in order to trig-
ger the actuators generating the acoustic sound. In some
cases the audio output of the other performers is automat-
ically analyzed to generate control messages. For example
audio beat tracking can be used to adapt to the tempo played.

Self listening is a critical part of musicianship as any-
one who has struggled to play music on a stage without a



Figure 1. The experimental setup for our robotic based
frame drum experiments. In the foreground, three frame
drums are shown with solenoids placed to ensure optimal
striking of the drum surface. In the background of the pic-
ture, the control system is shown.

proper monitor setup has experienced. However this ability
is conspicuously absent in existing music robots. One could
remove the acoustic drum actuated by a solenoid so that no
sound would be produced and the robotic percussionist will
continue “blissfully” playing along.

This work has been motivated by practical problems ex-
perienced in a variety of performances involving percussive
robotic instruments. Figure 1 shows our experimental setup
in which solenoid actuators supplied by Karmetik LLC. 1

are used to excite different types of frame drums.
We show how the ability of a robot to “listen” especially

to its own acoustic audio output is critical in addressing
these problems and describe how we have adapted relevant
music information retrieval techniques for this purpose. More
specifically, we describe how self-listening can be used to
automatically map controls to actuators as well as how it can
be used to provide self-adapting velocity response curves.
Finally, we show how pitch extraction and dynamic time
warping can be used for high-level gesture analysis in both
sensor and acoustic domains.

2. RELATED WORK

An early example of an automated, programmable musi-
cal instrument ensemble was described by al-Jazari (1136-
1206) a Kurdish scholar, inventor, artist, mathematician that
lived during the Islamic Golden Age (the Middle Ages in the
west). Best known for writing the Book of Knowledge of
Ingenious Mechanical Devices in 1206, his automata were
described as fountains on a boat featuring four automatic

1 http://karmetik.com

musicians that floated on a lake to entertain guests at royal
drinking parties. It had a programmable drum machine with
pegs (cams) that bumped into little levers that operated the
percussion. The drummer could be made to play different
rhythms and different drum patterns if the pegs were moved
around, performing more than fifty facial and body actions
during each musical selection. This was achieved through
the innovative use of hydraulic switching. A modern exam-
ple of a robotic musical ensemble is guitarist Pat Metheny’s
Orchestrion which was specifically influenced by the Player
Piano 2 . Metheny cites his grandfather’s player piano as
being the catalyst to his interest in Orchestrions, which is a
machine that plays music and is designed to sound like an
orchestra or band.

A seminal book in this field is “Machine Musicianship”
[9], in which one of the sections describes a comprehensive
system for the composition, creation and performance be-
tween humans and robots. Rowe describes improvisational
and composition systems that combine features of music
feature extraction, musical analysis and interactivity to gen-
erate engaging experiences for the audience. In our work,
the integration of machine musicianship and music robotics
has been used to develop a robotic percussionist that can
improvise with a human performer playing a sitar enhanced
with digital sensors [7].

Another work closely related to ours is the Shimon human-
robot based Jazz improvisation system [3] that uses a ges-
ture based framework that recognizes that musicianship in-
volves not just the production of notes, but also of the in-
tentional and consequential communication between musi-
cians [4].

Our system also uses these same basic building blocks,
but adds the power of machine learning and “propriocep-
tion” to the process, enabling the robot itself to perform
many of the time consuming mapping and calibration pro-
cesses that are often performed by hand in performance situ-
ations. In this context, a mapping refers to the process of de-
termining which controller output activates which solenoid.
In the next section we describe how some practical recurring
problems we have experienced with robots in music perfor-
mance robots have led to the development of signal process-
ing and machine learning techniques informed by music in-
formation retrieval ideas.

3. MOTIVATION

Our team has extensive experience designing music robotic
instruments, implementing control and mapping strategies,
and using them in live and interactive performances with
human musicians, frequently in an improvisatory context.
In addition two of the co-authors are professional musicians
who have regularly performed with robotic instruments. One

2 http://www.patmetheny.com/orchestrioninfo/



of the most important precursors to any musical performance
is the sound check/rehearsal that takes place before a con-
cert in a particular venue. During this time the musicians
setup their instruments, adjust the sound levels of each in-
strument and negotiate information specific to the perfor-
mance such as positioning, sequencing and cues. A sim-
ilar activity takes place in performance involving robotic
acoustic instruments in which the robots are set up, their
acoustic output is calibrated and adjusted to the particular
venue and mappings between controls and gestures are es-
tablished. This process is frequently tedious and typically
requires extensive manual intervention. To some extent this
paper can be viewed as an attempt to utilize techniques and
ideas from MIR to simplify and automate this process. This
is in contrast to previous work in robotic musicianship that
mostly deals with the actual performance. More specifically
we deal with three problems: automatic mapping, velocity
calibration, and melodic and kinetic gesture recognition.

The experimental setup that we have used consists of a
modular robotic design in which multiple solenoid-based
actuators can be attached to a variety of different drums.
We use audio signal processing and machine learning tech-
niques to have robotic musical instruments that ”listen” to
themselves using a single centrally located microphone.

It is a time consuming and challenging process to setup
robotic instruments in different venues. One issue is that
of mapping, that is, which signal sent from the computer
maps to which robotic instrument. As the number of drums
grows, it becomes more challenging to manage the cables
and connections between the controlling computer and the
robotic instruments. The system we propose performs tim-
bre classification of the incoming audio, automatically map-
ping solenoids correctly in real-time to the note messages
sent to the musically desired drum. For example rather than
sending an arbitrary control message to actuator 40 the con-
trol message is addressed to the bass drum and will be routed
to the correct actuator by simply “listening” to what each
actuator is playing in a sound-check stage. That way actua-
tors can be moved or replaced easily even during the perfor-
mance without changes in the control software. The same
approach is also used to detect broken or malfunctioning
actuators that do not produce sound.

When working with mechanical instruments, there is a
great deal of non-linearity and physical complexity that makes
the situation fundamentally different from working with elec-
tronic sound, which is entirely “virtual” (or at least not phys-
ical) until it comes out of the speakers. The moving parts of
the actuators have momentum, and changes of direction are
not instantaneous. Gravity may also play a part, and there
is friction to be overcome. Frequently actuators are on sep-
arate power supplies which can result in inconsistencies in
the voltage. The compositional process, rehearsal and per-
formance of “The Space Between Us” by by David A. Jaffe,

in which Andrew Schloss was soloist on robotic percussion,
involved hand-calibrating every note of the robotic chimes,
xylophone and glockenspiel. This required 18+23+35 sep-
arate hand calibrations and took valuable rehearsal time. In
this paper we describe a method for velocity calibration, that
is, what voltage should be sent to a solenoid to generate
a desired volume and timbre from an instrument. Due to
the mechanical properties of solenoids and drums, a small
movement in the relative position of these two can lead to a
large change in sound output. The most dramatic of these is
when during performance a drum moves out of place enough
that a voltage that at the start of the performance allowed the
drum to be hit now fails to make the drum sound. Depend-
ing on the musical context, this can be disastrous in a per-
formance context. Good velocity scaling is essential for a
percussion instrument to give a natural graduated response
to subtle changes in gesture, e.g. a slight increase in the
strength (velocity) of a stroke should not result in a sudden
increase in the loudness of sound.

Issues like velocity calibration or control mapping seem
quite pedestrian, or even trivial until one has grappled with
this problem with real instruments. We believe that the abil-
ity of a robotic instrument to perceive at some level its own
functioning is important in making robust, adaptive systems
that do not require regular human intervention to function
properly. We refer to this ability as “proprioception” which
in its original definition refers to the ability of an organism
to perceive its own status.

Finally we also describe some experiments recognizing
melodic and kinetic gestures at different tempi and with vari-
ations in how they are performed. This can be viewed as
an exchange of cues established before the performance es-
pecially in an improvisatory context. This allows higher-
level gestures to be used as cues without requiring exact re-
production from the human performer interacting with the
robotic instrument and enables a more fluid and flexible struc-
turing of performances.

4. EXPERIMENTS

4.1 Drum Classification for Automatic Mapping

We performed an experiment to investigate the performance
of a audio feature extraction and machine learning system
to classify drum sounds to perform automatic mapping. The
audio features used were the well known Mel-Frequency
Cepstral Coefficients (MFCC) calculated with a window size
of 22.3ms. These were then used as input to a Support Vec-
tor Machine (SVM) machine learning system. We collected
a dataset of audio with 4 different frame drums being struck
by the robot with a time of 128ms between strikes, then cal-
culated all the MFCC of this audio, and then found the 8
highest MFCC0 (roughly corresponding to perceptual loud-
ness) and marked these as onsets in the audio. The MFCC



Peak Percent Peak Percent
offset correct offset correct

0 66.38 4 90.52
1 91.95 5 86.49
2 91.67 6 86.49
3 91.95 7 77.59

Table 1. Classification accuracy of an SVM classifier The
Peak offset is the offset from the time the drum is hit.

feature vectors corresponding to these onsets were used to
train the classifier. A separate test data set was also col-
lected. Percussive sounds can be challenging to classify as
there is not a lot of steady state spectral information. The
results of this experiment gave a classification accuracy of
66.38%, as shown in the first line (Peak offset 0) in Table 1.
We then performed the same experiment but using instead
different offsets from the highest peak in window sizes of
22.3ms. When we classified all frames with the frame im-
mediately after the highest peak, we obtained a classifica-
tion accuracy of 91.95%. We interpret this result to mean
that the resonance after the transient is clearly distinguish-
able for different drums, whereas the transient at the onset is
fairly similar for different drums. This performance quickly
degrades as we move away from the onset.

This performance quickly degrades as we move away
from the onset. These results are for individual 22.3ms frames
so it is easy to get 100% correct identification by voting
across the entire recording which can then be used for the
automatic mapping. When we setup the robotic instrument
we actuate each solenoid in turn, classify the audio and then
set the appropriate mappings so that the control software can
address the actual frame drums rather than the actuators.
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Figure 2. Mapping from calibrated input velocities to out-
put driving velocities for different distances

4.2 Timbre-Adaptive Velocity Calibration

The acoustic response of a drum both in terms of perceived
loudness and timbral quality is non-linear with respect to
linear increases in voltage as well as to the distance of the
solenoid to the vibrating surface. In the past calibration was
performed manually by listening to the output and adjust-
ing the mapping of input velocities to voltage until smooth
changes in loudness and timbre where heard. In this section
we describe how to derive an automatic data-driven map-
ping that is specific to the particular drum.

Our first objective is to achieve a linear increase in loud-
ness with increasing MIDI velocity for a given fixed dis-
tance between beater and drumhead. However, in practice,
the beater may be mounted on a stand and placed next to the
drumhead mounted on a different stand. Thus the distance
between beater and drumhead will vary depending on setup,
and may even change during a performance. Thus a sec-
ond objective is to achieve a similar loudness versus MIDI
velocity (corresponding to voltage) curve over a range of
distances between beater and drumhead.

To achieve these objectives we collected audio for all
velocity values and three distance configuration (near 1cm,
medium 2cm, far 3cm). The loudness and timbre variation
possible is captured by computing MFCC for each strike.
More specifically for each velocity value and a particular
distance we obtain a vector of MFCC values. The frequency
of beating was kept constant at 8 strikes per second for these
measurements. The first MFCC coefficient (MFCC0) at the
time of onset is used to approximate loudness. Plots of
MFCC0 for the distance configurations are shown in 3(a).

In order to capture some of the timbral variation in addi-
tion to the loudness variation we project our MFCC vectors
to a single dimension (the first principal component) using
Principal Component Analysis (PCA) [5]. As can be seen
in 3(c) the PCA0 values follow closely the loudness curve.
This is expected as loudness is the primary characteristic
that changes with increasing velocity. However, there is also
some information about timbre as can be seen by the “near”
plot that has higher variance in PCA0 than in MFCC0.

Our goal is to obtain a mapping (from user input cali-
brated velocity to output driving velocity) such that linear
changes in input (MIDI velocity) will yield approximately
linear changes in the perceived loudness and timbre as ex-
peressed in PCA0. We utilize data from all the three dis-
tance configurations for the PCA computation so that the
timbrespace is shared. That way even though we get sep-
arate calibration mappings for each distance configuration
they have the property that the same calibrated input value
will generate the same output in terms of loudness and tim-
bre independently of distance.

In order to obtain this mapping we quantize the PCA0
values for each distance configuration into 128 bins that cor-
respond to the calibrated input velocities. The generated



mapping is the wrong way i.e from output driving velocities
to calibrated input velocities and is not an injection (one-to-
one function) so it can not be directly inverted. To invert
the mapping for each calibrated input velocity (or equiva-
lently quantized PCA bin) we take the average of all the
output driving velocities that map to it as the output driving
value. This calibration mapping is shown in Figure 2. Fig-
ures 3(b) and 3(d) show how changing the calibrated input
velocity linearly results in a linearized progression through
the timbrespace (PCA0) and loudness (MFCC0). In these
graphs we show directly the results of this calibration but
it is also possible to fit lines to them. In either case (direct
calculated mapping or line fit) the calibrated output changes
sound more smooth than the original output.

4.3 Gesture recognition using Dynamic Time Warping

Collaborating musicians frequently utilize high-level cues to
communicate with each other especially in improvisations.
For example a jazz ensemble might agree to switch to a dif-
ferent section/rhythm when the saxophone player plays a
particular melodic pattern during soloing. This type com-
munication through high level cues is difficult to achieve
when performing with robotic music instruments. In our
performances we have utilized a variety of less flexible com-
munication strategies including pre-programmed output (the
simplest), direct mapping of sensors on a performer to robotic
actions, and indirect mapping through automatic beat track-
ing. The final experiments described in this paper show how
high-level gesture recognition that is robust to changes in
tempo and pitch contour can be correctly identified and used
as a cue. Our system is flexible and can accept input from
a wide variety of input systems. We show experimental re-
sults with the radiodrum as well as melodic patterns played
on a vibraphone. There has been considerable work done in
the area of using Dynamic Time Warping for gesture recog-
nition, including work done by Akl and Valaee [1] and Liu
et al. [8].

For the first experiment, we used the most recent itera-
tion of the radiodrum system, a new instrument designed by
Bob Boie that dramatically outperforms the original radio-
drum in terms of both data rate and accuracy. We instructed
a professional musician to generate 8 different instances of
5 types of gestures, which were an open stroke roll, a sweep
of the stick through the air, a pinching gesture similar to
the pinch to zoom metaphor on touchscreens, a circle in the
air and a buzz roll. We collected (X,Y, Z) triplets of data
from the sensor at a sample rate of 44100Hz and then down-
sampled this data to 120Hz to allow us to compare gestures
that were on average 1-2 seconds in length while remain-
ing within the memory limits of our computer system. We
empirically determined that this rate captured most of the
information relevant to gesture recognition.

From this data, the similarity matrix of each gesture to

radiodrum Vibraphone
Gestures AP P@1 Gesture AP P@1
roll 0.866 1.0 pattern1 0.914 1.0
sweep 0.980 1.0 pattern2 0.812 0.9
pinch 0.837 1.0 pattern3 0.771 0.9
circle 1.000 1.0 pattern4 0.882 1.0
buzz 0.978 1.0 pattern5 0.616 0.9
MAP 0.931 1.0 MAP 0.799 0.94

Table 2. Average precision for different gestures on the
radiodrum and vibraphone. The Mean Average Precisions
(MAP) are 0.931 and 0.799.

each other gesture is computed. Dynamic Time Warping
[10] is used to compute an alignment score for each pair of
gestures that correspond to how similar they are. For each
query gesture we return a ranked list based on the alignment
score and calculate the average precision for each gesture.
As can be seen from Table 2 gesture identification is quite
reliable in both cases.

5. CONCLUSIONS AND FUTURE WORK

We have shown how techniques from MIR can be adapted
and used to solve practical problems in music robotics. More
specifically we show how audio classification can be used
for automatic mapping, principal component analysis can
be used for velocity/timbre calibration and dynamic time
warping for gesture recognition. This system has not yet
been tried in performance, and we are currently working
with musicians to deploy this system in a live setting. In
the future we plan to extend this work utilizing more sen-
sors including multiple microphones on both the robot and
the performers. To obtain the maximum possible dynamic
range we plan to have multiple actuators placed at different
distances on the same drum so that the ones that are far are
used for loud sounds and the ones that are near are used for
soft sounds. The proposed calibration method will be used
to drive seamlessly both actuators. We would also like to
investigate how MIR techniques can be used to “teach” the
robot to play and recognize rhythmic and melodic patterns.
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Figure 3. Velocity Calibration based on loudness and timbre
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