
Audio-visual vibraphone transcription in real time
Tiago F. Tavares #1, Gabrielle Odowichuck ∗2, Sonmaz Zehtabi #3, George Tzanetakis #4

# Department of Computer Science, University of Victoria
Victoria, Canada

1 tiagoft@uvic.ca, 3 szhetabi@uvic.ca, 4 gtzan@cs.uvic.ca

∗ Department of Electrical and Computer Engineering, University of Victoria
Victoria, Canada

2 godowichuk@gmail.com

Abstract—Music transcription refers to the process of detecting
musical events (typically consisting of notes, starting times and
durations) from an audio signal. Most existing work in automatic
music transcription has focused on offline processing. In this
work we describe our efforts in building a system for real time
music transcription for the vibraphone. We describe experiments
with three audio-based methods for music transcription that are
representative of the state of the art. One method is based
on multiple pitch estimation and the other two methods are
based on factorization of the audio spectrogram. In addition
we show how information from a video camera can be used to
impose constraints on the symbol search space based on the
gestures of the performer. Experimental results with various
system configurations show that this multi-modal approach leads
to a significant reduction of false positives and increases the
overall accuracy. This improvement is observed for all three audio
methods, and indicates that visual information is complimentary
to the audio information in this context.

Index Terms—Audiovisual, Music, Transcription

I. INTRODUCTION

There is an increasing trend of interfacing musical instru-
ments with computers. The most common approach is to create
specialized digital instruments that send digital signals about
what is played using protocols such as the Musical Instrument
Digital Interface (MIDI) or Open Sound Control (OSC) pro-
tocols. However, these instruments frequently lack the haptic
response and expressive capabilities of acoustic instruments. A
more recent approach has been to retrofit acoustic instruments
with digital sensors to capture what is being played. These
so called “hyperinstruments” [1] combine the haptic feel and
expressive capabilities of acoustic instruments while providing
digital control information. However, they tend to be expen-
sive, hard to replicate, and require invasive modifications to the
instrument which many musicians dislike. Indirect acquisition
[2] refers to the process of acquiring the control information
provided by invasive sensors by analyzing the audio signal
acquired by a microphone. When successful such systems
can provide similar capabilities to hyperinstruments without
requiring invasive modification. They are also easy to replicate,
and have significantly lower cost.
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The focus of this paper is the indirect acquisition of control
information for the vibraphone which is a member of the
pitched percussion family. The major components of a vibra-
phone are aluminum bars, tube resonators placed under the
bars, and a damper mechanism that controls whether notes are
sustained after they are struck or not. There are some digital
controllers with similar layout to a vibraphone that simply
trigger digital samples and do not produce acoustic sound. It
is also possible to augment acoustic vibraphones with digital
sensors to obtain information about what bar is being played
and when. However, this is costly and hard to accomplish
without altering the acoustic response of the instrument. In this
paper we describe how information about what bar is being
played and when can be extracted by computer analysis of
audio-visual information. The audio signal acquired by a single
microphone, that is not attached to the instrument, is used as
input to automatic transcription algorithms. Such algorithms
rely on digital signal processing techniques to detect and
characterize musical events (typically, the onset, offset and
pitch of musical notes). The detection of musical notes is
generally based on the harmonic model, that is, a note with a
certain pitch f0 is modeled by a sum of M sinusoidal signals
whose frequencies are multiples of f0 and whose amplitudes
and phases are individually defined [3], as in:

M∑
m=1

am cos(2πmf0 + φm). (1)

The output of an automatic transcription algorithm is a set
of notes characterized by their pitch (that is, which note in
the equal tempered scale is being played), onset (the instant
when the note is played) and offset (the instant when the
note is damped). Figure 1(a) shows a piano roll representation
of a short excerpt. In this representation, boxes represent
the detected notes. They are positioned in the row of their
corresponding note and they span horizontally from their onset
to their onset times. The spectrogram corresponding that same
excerpt is shown in Figure 1(b). The goal of our system is
to produce the piano roll representation given as input the
spectrogram as well as visual information from a camera. This
process needs to be carried out in real time which requires all
the processing to be causal.
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Fig. 1. Piano roll representation and spectrogram for a short excerpt.

When several harmonic signals are summed, the joint detec-
tion of their pitches becomes more difficult. This is especially
true in cases where the harmonic series of multiple signals
overlap, as can be seen in Figure 1(b) where the third harmonic
of note F4 coincides with the fourth harmonic of note C4 at
0.55 seconds. This is reflected in the results of most automatic
event detection algorithms, which often yield results that
correspond to a harmonic or sub-harmonic of the ground truth.
As music signals frequently contain combinations of notes
with overlapping harmonics this makes the separation and
detection of multiple sound sources in music more challenging,
in some ways, than speech signals. Another source of errors
in event detection algorithms is noise. Most event detection
algorithms assume that the analyzed signal contains only audio
from musical sources, but that is not true for many cases.
There are noises that are inherent to the audio acquisition
environment, like the noise of computer fans, heating systems,
steps, or even crowds, in the case of live performances. These
sources can be identified as musical notes, which may harm
the performance of the detection algorithm by increasing the
number of false positives.

It is important to note, however, that musical note events are
also correlated to certain physical gestures that are performed
by the musician. It has been shown that the combination of
audio and visual information tends to increase the performance
of speech recognition systems [4]. The use of audio and
visual information for musical transcription, to the best of our
knowledge, was first proposed by Gillet and Richard [5] in a
system capable of integrating data acquired from a microphone
and a video camera to detect and characterize the hits on a
drum kit. In this work we apply a similar approach to the live
detection of note events from a vibraphone. Gillet and Richard

show that the fusion of audio and video features can lead
to better transcription results than the results obtained using
solely audio or video. Later, Kapur et al. [6] used multiple
sensor fusion to detect certain gestures in sitar performances
which may easily be confused with each other if only auditory
information is considered.

This paper proposes a multi-modal solution for the detection
of events in vibraphone performances, aimed at reducing the
harmonic errors and the errors due to ambient noise when
compared to the traditional audio-only solution. Three differ-
ent audio signal processing methods were tested: the Non-
Negative Least Squares fitting (NNLSQ) [7], the Probabilistic
Latent Component Analysis (PLCA) [8], and the auditory-
inspired multiple fundamental frequency detection method
proposed by Klapuri [9]. The computer vision technique used
in the paper relies on a video camera that is mounted on top
of the vibraphone to estimate the position of the mallets in
relation to the bars. This information is combined with the
audio-based results so that positioning the mallet over a bar
is a necessary condition for a note to be detected.

The paper is organized as follows. In Section II, the pro-
posed system and its modules are described. In Section III, the
evaluation methods are described and the results are shown.
Finally, in Section IV further discussions are conducted and
conclusive remarks are presented.

II. SYSTEM DESCRIPTION

The system proposed in this paper relies on both audio and
video data, which are jointly analyzed in order to detect when
a musician plays a certain note. The audio data is analyzed by
a real-time transcription algorithm, which consists of a signal
processing front-end and an event detection method. The three
signal processing front-end considered were based on NNLSQ
[7], PLCA [8], and the method proposed by Klapuri [9]. The
event detection method is based on adaptive thresholding. The
video data is processed by a computer vision algorithm that
is responsible for detecting the position of the mallets over
the instruments’s body. Since it is necessary to hit a certain
bar with the mallet in order to produce sound, the information
on the location of the mallet is used to inhibit the detection
of notes that are clearly not being hit by the mallet at that
moment. This Section is divided in two parts. In the first one,
the computer vision algorithm and the hardware requirements
for the video camera are described. In the second one, the
different audio analysis algorithms are described, as well as
how the audio and visual information is integrated.

A. Computer vision

In this work, computer vision techniques are used to track
the position of the percussionist’s mallet tips relative to the
vibraphone bars. This technique allows us to determine which
bars of the vibraphone are covered by the mallets and therefore
“active”. The assumption is that if the mallets are covering a
certain bar, then it is likely that the pitch associated with that
bar will be heard. Of course there is also the possibility of



Fig. 2. Computer Vision Mallet Detection with a) blob detection and b) a
virtual scaled copy of the vibraphone.

the mallet covering a bar without the note being played as the
performer moves the mallets across the instrument.

Using a VGA webcam (in this work, we used the one
that is integrated in the Microsoft Kinect) mounted above
the vibraphone and computer vision libraries [10], we are
able to track the vibraphone performer’s mallet tips based
on their color. This process involves filtering out everything
except a desired color range, and then performing contour
detection on the filtered image. The color filtering process
is shown in Figure 3. The color image is first separated
into Hue, Saturation, and intensity Value (HSV) components.
A binary threshold is applied to each of these components,
setting all values within a desired range to 1 and the rest to
0. Recombining these images by performing boolean AND
operations yields an image where nearly everything except the
tips of the mallet sticks have been removed.

xbinary thres =

{
1 if min < x < max
0 otherwise

(2)

Contour detection is performed on the binary image using
a technique called border following [11]. This technique
involves traversing edges between 0 and 1 in the binary image
and creating a sequence. If this sequence returns to it’s starting
point then a contour has been detected. For our purposes, a
bounding rectangle around each contour is returned. Finally,
the possible correct results are limited by area, excluding
contours that are too large or too small.

Tracking objects with blob detection algorithms returns po-
sition data relative to the pixel space of the camera. However,
we would like these positions to exist in a virtual space
that also includes a 3D model of the vibraphone bars. Using
explicit measurements, a scaleable model of the vibraphone
was created. Assuming linearity in the position output from the
camera, our mallet positions are transformed into our virtual
space using the linear normalization shown in Expression
3. Currently, a calibration stage is needed to determine the
position of the vibraphone relative to the camera pixel space.

pnorm =
po − pmin

pmax − pmin
(3)

Although this method is simple, sensitive to lighting condi-
tions, and requires manually setting the color of the mallet tips,
it has given results that are accurate enough for the purposes
of this paper.

Fig. 3. Computer Vision Flow Diagram

B. Machine listening

The audio analysis techniques we use are based on the
assumption that audio signals resulting from the mixing of
several different sources are, in terms of physical measures,
the sum of the signals corresponding to each individual source.
Similarly, the human perception of listening to that sound
is essentially the superposition of the sensations triggered
when listening to each individual source. Therefore, it is
reasonable to assume that, to a certain extent, the phenomenon
of detection of sound sources may be described using the
following linear model:

X = BA. (4)

In that model, B is a set of basis functions forming a
dictionary, that is, a set of vector representations of the sources
to be identified, X is the representation of several measures
of the phenomenon in the same domain as B, and A is a set
of activation coefficients that represent how much each basis
function (corresponding to a source) defined in B is active
in each measurement. Figure 4 shows an example activation
matrix, in which each line represents a different note and each
column represents a different time frame. According to the
harmonic model described in Expression 1, a particular note
tends to have a stationary representation when considering
the magnitude of its Discrete Fourier Transform (DFT). This
means that the magnitude spectrum is, for harmonic signals,
one possible representation that enables the use of the linear
model in equation 4.

The assumption of linearity in the harmonic model has been
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Fig. 4. Example activation matrix.

used successfully in several experiments, both using Non-
Negative Matrix Factorization (NMF) [12], [13], in which
the basis matrix B is obtained by unsupervised learning,
and the NNLSQ approach [14], in which the basis matrix B
is obtained previously by means of supervised learning and
only the activation matrix is estimated. Although the NNLSQ
requires a previous stage of training, it allows causal pro-
cessing, which is essential for real-time applications. Another
way of calculating a conceptually similar activation matrix
is by means of the Probabilistic Latent Component Analysis
(PLCA) [8]. This technique consists of assuming that both B
and A denote probability distribution functions and executing
the Expectation-Maximization (EM) technique to obtain them.
In the implementation used in this paper, the basis matrix
B is obtained in a previous stage from training data and is
not adapted (supervised version). Both NNLSQ and PLCA
are search algorithms that aim at minimizing the norm of the
approximation error ‖X − BA‖ so their results are similar
but are different due to the optimization process utilized.

An alternative method to obtain the activation matrix A is to
perform an auditory inspired search for multiple fundamental
frequencies, as proposed by Klapuri [9]. This search method
incorporates psycho-acoustic knowledge both to design the
basis matrix and to obtain the activation of each base. Klapuri’s
algorithm is based on calculating a salience function for each
fundamental frequency candidate, which indicates how much
it is active. The most salient candidate is then subtracted from
the spectrum and these two steps are iteratively performed
until the desired number of notes is obtained. In this paper, the
algorithm was adapted so that the activation value for the four
notes corresponding to the first four estimated fundamental
frequencies are equal to their saliences, and the activation for
the other notes are equal to their saliences after the removal
of those four notes.

The audio processing algorithms rely on a framewise spec-
trogram representation, calculated as follows. The input signal
is sampled at 48 kHz and processed in discrete frames of
46ms, with a 23 ms overlap. Each frame is multiplied by
a Hanning window, zero-padded to twice its original length
and is transformed to the frequency domain using the DFT,
obtaining X . In order to minimize the influence of of variation
in harmonic amplitudes, X is logarithmically scaled as in
Y = log10(1+‖X‖) [14] (the logarithmic scaling is bypassed
when using Klapuri’s method, as it already performs spectral
normalization [9]). Finally, the frequency domain representa-
tion is trimmed in frequency ignoring values ignore values

outside the frequency range in which the vibraphone operates.
The basis functions are obtained by taking the spectrogram

of a recording containing a single note hit and averaging the
first few frames. Only these few frames are used because, in
the vibraphone sounds, the harmonics decay quickly. Using
more data from a particular note would converge to a spectro-
gram that would be dominated by the fundamental frequency
of the series instead of all the harmonics. The spectrogram is
then normalized in order to have unity variance (but not zero
mean). The normalization is used in order to ensure that the
values in each row of the activation matrix A represent the
energy of the activation of the corresponding note.

For the factorization-based methods (NNLSQ and PLCA), a
set of additional basis functions, called noise basis functions,
are also included in the basis matrix (or dictionary). Noise
basis functions are calculated as triangles in the frequency
domain, which overlap by 50% and have center frequencies
that start at 20 Hz and increase by one octave from one noise
base to the next one. This shape aims to give the system
flexibility in modeling background noise, specifically non-
harmonic sounds, as filtered white noise. This way, back-
ground noise is less likely to be modeled as a sum of basis
vectors corresponding to notes, that is, background noise is
less expected to affect the contents of the activation matrix.

For each incoming frame of audio, the activation vector is
calculated. and is then analyzed by an event detection method
that yields decisions as to when notes are played. The method
works as follows. In order to trigger the detection of a note,
the corresponding value in the activation matrix must be over
a fixed threshold α and its derivative (that is, an,t − an,t−1),
must be over another threshold β. When a note is found, an
adaptive threshold τ value is set to that level multiplied by
an overshoot factor γ. The adaptive threshold decays linearly
at a known rate θ following the rule τt+1 = τt − (1 − θ). A
new note may only be detected if its activation value is greater
than τ , in addition to the thresholding rules regarding α and β.
Figure 5 shows artificial activation values and values for the
detection threshold max(α, τ). Three positions are marked,
showing when false positives are avoided due to the fixed
threshold related to α, the adaptive threshold defined by γ and
θ and, finally, due to the minimum derivative rule related to
β. Additionally to the thresholding related to each individual
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Fig. 5. Example detection by thresholding. False positives are avoided due
to the fixed threshold, the adaptive threshold and the derivative rule.

note, the system deals with polyphony by assuming that a



certain activation level only denotes an onset if it is greater
than a ratio φ of the sum of all activation values for that frame.

If the audio signal passes all tests described above, the esti-
mated bar for the mallet using the computer vision algorithm
is used as a necessary condition for detecting a particular note.
With this additional condition, it is expected that octave errors
and other common mistakes regarding ghost notes can be
avoided. It was observed, however, that the signal containing
position data was noisy, presenting several false negatives. To
deal with that problem, the signal was transformed in a multi-
channel binary sinal, where a 1 in channel b means that the
mallet is detected over bar b during a certain time frame. The
length and hop size of the frames, for this processing, are
identical to the ones used in the audio processing algorithm.
After this conversion, the binary signal is filtered with a decay
filter, defined as:

y[n] =

{
x[n] x[n] ≥ x[n− 1]

dx[n− 1] x[n] < x[n− 1]
, (5)

where the coefficient d is the decay amount. The filtered signal
is thresholded at 0.5 (that is, is equal to 0 if y[n] < 0.5
and equal to 1 otherwise). This smoothing process forces the
system consider that the mallet is over a bar if it was actually
detected there in the last few frames, inhibiting false negatives
in that detection. In the next section, the objective evaluation of
the effects of using this multi-modal approach for transcription
are considered.

III. EVALUATION

The experiments described in this section were conducted
using audio and video recordings of an acoustic vibraphone.
The acoustic data was gathered using a microphone placed in
the middle of the vibraphone. The video data was acquired by
a videocamera placed on top of the instrument. The recordings
intentionally contain harmonically-related notes and heavy use
of the sustain pedal. The Signal-to-Noise Ratio varied between
−40 dB and 40 dB, both due to the room (heating system,
computer fans, etc.), the instrument itself, and artificially-
mixed crowd noise. The values for the parameter used in the
experiments described here were α = 0.05, β = 0.1, γ = 1.2,
θ = 0.1, φ = 0.2 and d = 0.9. These parameters were
obtained empirically, by observing the typical values found
in the activation matrix and optimizing for better results. The
melodies in the evaluation dataset were manually annotated,
providing a ground-truth for evaluation. The evaluation data
consisted of a total of around 5 minutes of recordings, with 150
annotated notes. The melodic patterns intentionally include
polyphony with harmonically-related intervals such as major
thirds, fifths and octaves. The number of simultaneous notes
varied from one, in simple monophonic phrases, to eight, when
the sustain pedal was used. The dataset, as well as the source
code used are available upon request.

The transcription algorithm was executed over the evalua-
tion data, yielding a series of symbols. In order to evaluate
the performance of the system, the symbols in the automatic
transcription are matched to the symbols in the ground truth

using a proximity criterion [15]. This matching procedure
finds out what note in the automatic transcription was the
best attempt (considering a distance measure that accounts
for time and pitch deviation) to describe each note in the
ground truth. A particular note in the automatic transcription
is considered correct if its pitch is equal to the pitch in the
ground truth and its onset does not deviate from the ground
truth by more than 100 ms. The time tolerance accounts
for an inevitable deviation due the framewise nature of the
transcription algorithm as well as an inherent human error
when the ground truth reference is built. This allows calcu-
lating the Recall (R, number of correct events divided by
the total number of events in the ground truth), Precision
(P , number of correct events divided by the total number of
yielded events) and, finally, their harmonic mean called the
F-Measure (F = 2RP/(R+ P )).

This process was executed utilizing the three different audio
analysis algorithms (Klapuri’s, PLCA and NNLSQ). All three
of them were also tested in a configuration that does not use
computer vision (blind ). We also consider a modification of
the algorithm using only vision data (that is, a deaf algorithm),
which works by considering an onset as soon as a mallet is
placed over a bar and an offset when it is removed from the
bar. Two different pieces were used, one of them with heavy
use of the sustain pedal and another without using the sustain
pedal. The F-Measure for both of them was calculated in each
test, and the average of them is reported in Figure 6.
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Fig. 6. Average F-Measure for each modification of the proposed algorithm.

The Recall, Precision and F-Measure for each variation
of the algorithm are averaged over the two teste tracks and
reported in Table I.

TABLE I
RESULTS FOR DIFFERENT ALGORITMS AND PIECES.

Variant Audio R P F
Deaf - 0.34 0.15 0.22

Blind

NNLSQ 0.85 0.31 0.39
PLCA 0.50 0.18 0.26
Klapuri 0.45 0.25 0.31

Multimodal

NNLSQ 0.50 0.53 0.49
PLCA 0.35 0.69 0.48
Klapuri 0.48 0.66 0.48

The results above show that the use of computer vision in-
formation has consistently improved the transcription accuracy
of the tested systems. Also, regardless of the method used to



obtain the activation matrix A, the improvement obtained for
the results were roughly the same.

In order to evaluate the changes in the pitch errors due to
the use of the vision algorithm, a more detailed evaluation was
held. In this evaluation, each note yielded by the transcription
system was related to the note that is the closest to it in the
ground truth, according to the same distance metric used to
obtain the results above [15]. The pitch errors were classified
as octave errors (if the same pitch class was found, but in a
different octave), tone errors (if the pitch difference is equal
to one or two semitones) and other errors (for other pitch
deviations). The fraction of errors in each of these categories,
considering the blind and multimodal variants of the method
that performed best in our experimentos – NNLSQ – as well
as the deaf approach, are shown in Figure 7.
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Fig. 7. Pitch errors for deaf and NNLSQ-based variants of the algorithm.

As it can be seen, when the multimodal approach is used,
the fraction of octave errors was reduced. At the same time, it
can be seen that the fraction tone errors increases, represent-
ing a performance tradeoff indicating further possibilities for
improvement.

IV. CONCLUSION

This paper has presented a method for the multi-modal real
time transcription of the vibraphone. The method relies on
a causal transcription algorithm that operates in parallel with
a computer vision algorithm. The transcription algorithm is
responsible to detect, in the audio signal, characteristics that
indicate note onsets. The computer vision algorithm yields
information on the position of the mallets. Both are combined
so that an onset is only detected if the transcription algorithm
indicates so and, at the same time, the mallet is over the
corresponding bar of the instrument.

Three different signal processing techniques were tested for
the audio analysis part of the algorithm: factorization using
NNLSQ [7] and PLCA [8], and the multiple fundamental fre-
quency method proposed by Klapuri [9]. The results obtained
show that using any of these algorithms result in roughly the
same transcription accuracy. Results also show that, regardless
of the signal processing used for audio analysis, the use of
information from computer vision has consistently improved
the transcription accuracy.

The proposed system does not present enough accuracy for
applications such as performance analysis or documentation.
However, it may still be used in applications that support more
errors in the transcription, like chord recognition, automatic
harmonization or creative soundscape design.

The are several interesting directions for future work. The
computer vision algorithm could be modified tracking al-
gorithm would work in different lighting conditions – an
important factor for live performance applications – and in
three dimensions, so that the proximity between the mallet and
a certain bar can be measured more accurately. We also plan to
explore how our systems can be used in applications such as
automaic score following, chord detection and harmonization
that can take advantage of imperfect transcription results.
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