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The constantly increasing amount of audio available in
digital form necessitates the development of software
systems for analyzing and retrieving digital audio. In this
work, we describe our efforts in developing such sys-
tems. More specifically, we describe the design philos-
ophy behind our approach, the specific problems we try
to solve, and how we evaluate the performance of our
algorithms. Automatic music analysis and retrieval of
non-speech digital audio is a relatively new field, and the
existing techniques are far from perfect. To improve the
performance of the developed techniques, two main
techniques are used: (1) integration of information from
multiple analysis and retrieval algorithms and (2) the use
of graphical user interfaces that enable the user to pro-
vide feedback to the design, development, and evalua-
tion of the algorithms. All the developed algorithms and
user interfaces are integrated under MARSYAS, a soft-
ware framework for research in computer audition.

Introduction

Although the manipulation and storage of sound using
computers is not new, only recently have developments in
compression technology, network bandwidth, and storage
capacity made possible, for the average user, the creation of
large collections of digital audio and especially music. Cur-
rently, the main way users interact with these increasingly
large audio collections is by conventional browsing tools
that employ only the file name information and occasionally
some manually annotated metadata. Another important
characteristic of the developed systems is that they work
directly on raw audio signals without attempting to perform
polyphonic transcription. More sophisticated analysis and
retrieval software systems for music are required to handle
the increasing size and complexity of these collections. It is
very likely that in the near future most of the recorded music
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in human history will be available on the Web, and most of
the recording companies are currently investigating busi-
ness models of how this is going to be accomplished.
This article is an overview of research in music infor-
mation retrieval (MIR) for audio signals conducted in the
last four years in the Computer Science Department of
Princeton University. A main goal of this project is to take
advantage of the human user during the design, develop-
ment, and evaluation of the proposed software systems. The
goal of this article is to provide a broad overview of the
design, development, and evaluation of music analysis and
retrieval systems for audio signals by summarizing the
results of several conference and journal publications. Ad-
ditional technical details can be found in the references.

Overview—Terminology

Feature Extraction is the process of computing a numer-
ical representation that can be used to characterize a seg-
ment of audio. This numerical representation is called the

feature vector, and is subsequently used as the fundamental

building block of various types of analysis algorithms. This
vector typically has a fixed dimension and therefore can be
thought as a point in a high dimensional feature space. For
music—and audio in general—the computed features are
typically calculated based on some Time-Frequency De-
composition Technique. Some examples are the Short Time
Fourier Transform (STFT), the Discrete Wavelet Transform
(DWT), and Linear Prediction Coefficients (LPC). All these
signal processing techniques calculate how the energy of the
signal is distributed in time and frequency. When using
feature vectors to represent music audio files two main
approaches are used. In the first approach the audio file is
broken into small segments in time and a feature vector is
computed for each segment. The resulting representation is
a time series of feature vectors, which can be thought of as
a trajectory of points in the feature space. In the second
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approach a single feature vector that summarizes informa-
tion for the whole file is used.

Beat extraction and analysis is a special case of feature
extraction where the extracted features attempt to represent
the rhythmic structure of the music. Although typically an
estimate of the main beat of the music and of its strength are
computed, more detailed information can be used for MIR.

Content-based similarity retrieval is arguably the most
basic analysis that can be performed using the feature vector
representation. In this technique, the user provides a sample
music audio file as a query and the system returns a list of
“similar” music audio files ranked by their similarity. Using
the single feature vector approach, similarity retrieval can
be performed by ranking the returned files based on their
distance from the query feature vector. Using the feature
space analogy the query can be thought of as a point, and the
points that are closest to it are the ones that have similar
content. More complicated techniques outside the scope of
this article are required for similarity retrieval using the
feature vector trajectory approach.

Another technique that is based on feature extraction is
classification, where a music audio file or segment is auto-
matically assigned to set of predefined class labels. Exam-
ples of classification in MIR are vocal vs. instrumental
music, musical instrument classification, and genre classi-
fication. Classification can be thought of as a partitioning of
the feature space into regions such that all points in a region
belong to the same class. The shape and number of those
regions for each class depend on the specific classification
method used.

In many cases a variety of music “textures” are used
throughout a music work. For example, a piano concerto
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might contain parts where only the piano is playing, parts
where the orchestra and the piano are playing , and parts
where only the woodwind section of the orchestra is play-
ing. A rock piece might consist of an instrumental introduc-
tion, chorus, and a guitar solo. Similarly a jazz piece might
contain improvised solos by individual instruments in ad-
dition to the chorus of the song where all the instruments are
playing. Segmentation refers to the process of detecting
where in time those music “texture” changes occur. One
way of doing this is by detecting abrupt changes in the
trajectory of feature vectors. Figure 1 is a schematic over-
view of feature extraction, segmentation, and classification.

In audio thumbnailing or music summarization the goal
is to create a short summary version that captures the
essential characteristics of a music audio file. Audio thumb-
nailing is typically used for the short presentation of many
audio files as, for example, in browsing and similarity
retrieval ranked lists. Another technique used for browsing
and retrieval lists is audio visualization, where 2D or 3D
graphics are used to represent music audio files or collec-
tions.

Polyphonic transcription is the process of converting a
raw music audio file to a high level symbolic representation
typically consisting of notes and their durations. The most
common format for this symbolic representation is MIDI.
This high level representation can then be used for symbolic
MIR. Unfortunately, a polyphonic transcription system that
works robustly with arbitrary raw audio signals has not yet
been developed.

The term computer audition is used in this article to refer
to any technique that tries to extract information from raw
audio signals. Other terms for this technique used in the
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published literature are Computational Auditory Scene
Analysis (CASA) and Machine Listening.

Related Work

Foote (1999) offers an early overview of research in AIR
including speech and symbolic MIR. One of the earliest
published Audio Information Retrieval (AIR) systems is
described in Wold, Blum, Keislar, and Wheaton (1996). In
this system spectral features and statistical pattern recogni-
tion techniques are used to classify and retrieve from a
database of short isolated sounds—mainly musical instru-
ments and sound effects. The collection of isolated sounds
used in Wold et al. has been used as a testbed to compare
other methods (Foote, 1997; Welsh, Borisov, Hill, von
Behren, & Woo, 1999; Li, 2000; Li & Khokar, 2000).

Audio feature extraction for AIR has been based on
techniques developed for speech recognition. Probably the
most common form of analysis front-end for feature extrac-
tion is the short time Fourier Transform (STFT) (Rabiner &
Gold, 1975). Mel-frequency cepstral coefficients (MFCC)
are a more perceptually accurate representation typically
used in speech recognition applications (Davis & Mermel-
stein, 1980). Another technique originating from speech
research is linear prediction coefficients (LPC) (Makhoul,
1975). Audio features can also be directly calculated from
compressed audio data like MP3 files (Pye, 2000; Tzan-
etakis & Cook, 2000D).

Scheirer and Slaney (1997) describe the construction and
evaluation of a classifier for discriminating music from
speech. The classification of music instrument sounds has
been explored in Brown (1999), Fujinaga (2000), Martin
(1999), and Eronen and Klapuri (2000). Tzanetakis and
Cook (2001) describe automatic musical genre classifica-
tion. Techniques for automatic audio segmentation are de-
scribed in Aucouturier and Sandler (2001), Foote (2000),
Kimber and Wilcox (1996), and Tzanetakis and Cook
(2000a). A classification and segmentation system for audio
signals from movies or TV programs is described in Zhang
and Kuo (2001). Logan (2000) describes a method for
automatic music summarization (audio thumbnailing) and
describe user experiments that show that it performs better
than random summarization.

Methods for automatic beat and tempo detection are
presented in Foote and Uchihashi (2001), Scheirer (1998),
Goto and Muraoka (1998), and Smith (1999). The use of a
beat histogram for genre classification is described in Tza-
netakis and Cook (2001). Perceptually motivated music
listening systems are described in detail in Scheirer (2000),
Ellis (1996), and Smaragdis (2001) deal with more general
problems in computational auditory scene analysis.

Design Guidelines

The field of Audio Information Retrieval (AIR) is rela-
tively new and still developing. As a result, most of the
existing algorithms are not perfect. Because the goal of this

project is to build robust prototype music analysis and
retrieval systems, several ways of dealing with the imper-
fections of the existing techniques are used. To handle the
uncertainty and noise of the calculated features, statistical
pattern recognition and machine learning techniques are
used. Integrating the results of different algorithms is an-
other way of improving their performance. For example,
when classifying a piano concerto, the classification results
can be improved by first automatically detecting the piano
and orchestra segments, and then classifying those segments
separately. In similarity retrieval the results can be im-
proved by restricting the returned results to files of a par-
ticular musical genre that is automatically detected using
classification algorithms. The order in which the algorithms
are integrated can be either predefined or controlled by the
user. The user can interact with the system using traditional
and novel graphical user interfaces. Having all the algo-
rithms integrated under a common interface allows the user
to edit imperfect results and to provide feedback to the
algorithms. In addition, the use of visualization takes ad-
vantage of the strong pattern recognition abilities of the
human visual system to enhance the results. For example,
the AABA (where A and B are different sections and A
repeats) structure of a particular song can be clearly dis-
played using appropriate automatic audio visualization tech-
niques, although it might be difficult to detect automatically.
Finally, the graphical user interfaces can be used in user
studies for evaluating the developed algorithms.

Evaluation Results

The performance of a MIR system is defined by what
human users expect from it rather than some easy to calcu-
late, objective measure. To evaluate the performance of the
developed MIR systems, several user studies have been
conducted. For each of these user studies the main goal has
been to answer the following questions:

1. What is the average human performance for the task we
are trying to automate?

2. How consistent are the human responses between sub-
jects?

3. How do human users judge the performance of the
automatic system?

4. Does the existence of an automatic system influence the
user responses?

In addition to these questions typically the manual results
of the user study are used to further tune the parameters of
the automatic algorithms. For classification purposes a su-
pervised learning paradigm is used. In this approach the
goal is to derive a statistical model of the distribution of
feature vectors for a particular class. This is achieved
through the use of a training set of labeled feature vectors
extracted from a large collection of an audio file represen-
tative of that particular class. More details regarding this
process can be found in standard Pattern Recognition text-
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FIG. 2. Automatic accuracy classification results.

books like Duda, Hart, and Stork (2000), Fukunaga (1972),
and Schalkoff (1992).

Figure 2 summarizes the results of various types of
automatic classification for audio signals. For each data set
the automatic classification accuracy is compared with
chance classification. To calculate these results, a tenfold
evaluation paradigm was used. In this paradigm, many
different random partitions of the data to training and testing
data are used and the classification results averaged 100
iterations. This way the classification results are represen-
tative of how the algorithm would perform with real world
data provided that the labeled data set we use is represen-
tative of the class in which we are interested. For each data
set the following classes were used:

1. MusicSpeech: Music, Speech.

2. Voices: Male Voice, Female Voice, Sports announcing.

3. Genres: Classical, Country, Disco, HipHop, Jazz, Rock,
Blues, Reggae, Pop, Metal.

4. Jazz: Bigband, Cool, Fusion, Piano, Quartet, Swing.

5. Classical: Choir, Orchestra, Piano, String Quartet.

The performance of humans in classifying musical genre
has been investigated in Perrot and Gjerdingen (1999).
Using a ten-way forced choice paradigm, college students
were able to accurately judge (53% correct) after listening

to only 250-millisecond samples and (70% correct) after
listening to 3 seconds (chance would be 10%). Although
direct comparison of these results with the automatic musi-
cal genre classification is not possible due to different
genres and datasets, it is clear that the automatic perfor-
mance is not far from the human performance. It should be
noted that perfect performance in genre classification is
probably impossible to achieve because of the fuzzy nature
of genre definitions. Figure 3 shows the confusion matrix
for the automatic genre classification. The columns corre-
spond to the actual genre and the rows to the predicted
genre. For example, the cell of row 6, column 3, with value
16, means that 16 percent of Country music (column 3) was
misclassified as Rock music (column 7). The percentages of
correct classifications lie in the diagonal of the confusion
matrix.

To evaluate the automatic segmentation methodology
proposed in Tzanetakis and Cook (1999), two user studies
were conducted. In these experiments the subjects were
asked to segment ten 1-minute-long sound files. A variety of
textures and styles are represented. In particular there were
two excerpts from radio broadcasts with speech and music,
three classical music excerpts, two jazz excerpts, one funk
excerpt, and two rock-pop music excerpts. Twenty subjects
were used for two user studies. In the first study a standard
sound editor was used to segment the files whereas in the
second study the users edited an automatically provided
segmentation. The subjects were asked to segment each
sound file in three ways. The first way, which we call “free,”
is breaking up the file into any number of segments. The
second and third way constrain the users to a specific budget
of total segments 8 £ 2 and 4 *= 1. Without going into
details, there was significant agreement between subjects
regarding segmentation marks. The percentage of total seg-
mentation marks that more than 10 of the 20 subjects agreed
upon is 73% (in the case of free segmentation). Further-
more, 87% of these segmentation marks were automatically
detected by our algorithm. Finally, in the second user study
where an automatically suggested segmentation was used,
70% of the automatically suggested segmentation marks
were retained, and the automatic segmentation did not bias
the segmentation results. More details about these user

Classical | Country | Disco | Hiphop | Jazz | Rock | Blues | Reggae | Pop | Metd
Classical | 73 0 0 0 6 2 0 0 0 0
Comtry |0 43 1 0 1 6 2 4 3 1
Disco 0 6 43 10 0 4 9 3 3 2
Hiphop |0 9 19 0 3 2 1~ 10 |2
Tazz 21 s 1 0 71 6 s 0 2 3
Rodk 4 16 6 1 8 4 11 s 11 17
Blues 2 18 2 1 7 7 ol s 1 2
Reggae |0 2 12 30 2 13 G 63 6 0
Pop 0 3 25 8 3 7 0 3 64 |2
Metal 0 3 1 1 1 11 4 0 0 -1
FIG. 3. Automatic genre confusion matrix.
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FIG. 4. Evaluation of rock-song music retrieval.

studies can be found in Tzanetakis and Cook (1999, 2000a).
In addition to segmenting the sound files, users had to
provide a thumbnail and text annotation for each segment.
Most of the thumbnails were around the segmentation
boundaries, suggesting that thumbnails can be created based
on the automatic segmentation. User experiments to evalu-
ate this method for audio thumbnailing are planned for the
future. A preliminary examination of the text annotations
showed that about 60% of all words fit into three categories:
sound source descriptions (like saxophone solo or orches-
tra), structural music theoretic description (like introduc-
tion, chorus), and basic acoustic parameters (like loud or
soft). Creating a system that automatically suggests text
annotations is planned for the future.

A user study of content-based music information re-
trieval of rock songs was conducted. The large size (1000
files) of the collection made the calculation of recall difficult
so only precision was examined. The relative uniformity of
the collection (only rock songs) made the retrieval task
more challenging. Because the 30-second snippets used for
evaluation did not have many texture changes, the single
vector approach for representing audio files was used. Seven
subjects were asked to give a relevance judgement from 1
(worse) to 5 (best) for each file returned. There were 12
queries, five matches returned for each query and three
algorithms (random, beat-only, beat and texture) giving a
total of 7 X 5 X 12 X 3 = 1,260 collected data points. The
beat detection was performed using the algorithm described
in Scheirer (1998).

Figure 4 shows the mean and standard deviation of the
three retrieval methods. The standard deviation is due to the
different nature of the queries and subject differences and is
about the same for all algorithms. Although it is clear that
the system performs better than random and that the full
approach is slightly better than using only beat detection,
more work needs to be done to improve the scores.

We are currently conducting a user experiment to inves-
tigate how humans perceive music beat strength. Each sub-
ject has to rate 50 segments from a variety of musical styles
into five beat strength groups (weak, medium-weak, me-
dium, medium-strong, strong). The order of presentation is
randomized to avoid any order effects. Preliminary results

from the ten subjects who have completed the study so far
indicate that there is large agreement between subjects
regarding music beat strength. The results of this study will
be used to evaluate and improve the beat histogram calcu-
lation method described in Tzanetakis and Cook (2001).

Graphical User Interfaces

Several content aware graphical user interfaces specifi-
cally designed for browsing and interacting with large audio
collections have been developed. These are:

1. Augmented sound editor. This interface offers the same
functionality as a traditional sound editor (waveform and
spectogram displays, mouse selection, playback status
bar, zooming, etc). In addition to these typical features,
a sound file can be automatically segmented with each
region displayed with a different color. For browsing the
user can move by regions and each region can be anno-
tated with text. Different classification schemes can be
applied to each segmented region or to arbitrary selec-
tions. Retrieval and audio thumbnailing are also sup-
ported.

2. Timbregrams are a collection-dependent way of visual-
izing sounds. Each timbregram consists of a series of
vertical color stripes where each stripe corresponds to a
feature vector. The timbregram reveals sounds that are
similar by color and time periodicity. For example, the
ABA structure of a song will be reflected in an ABA
structure in color. Because the mapping of the feature
vectors to color depends on the specific data collection
used, multiple visualizations with different meanings for
the same file are possible.

3. Timbrespace is another collection-dependent way of vi-
sualizing collections of sounds for browsing. Each sound
(feature vector) is represented as a single point in a 3D
space. The mapping of sounds to points is performed
automatically and is dependent on the specific data col-
lection used. The Timbrespace reveals similarity of
sounds based on their proximity in the space. Figure 5
shows a Timbrespace.

4. GenreGram is a dynamic real-time 3D graphics audio
display targeted toward radio signals. The live radio
signal is analyzed in real time and is classified into 11
categories: Male Voice, Female Voice, Sports Announc-
ing, Classical, Country, Disco, Fuzak, HipHop, Jazz,
Rock, and Static. For each of these categories a confi-
dence measure, ranging from 0.0 to 1.0, is calculated and
used to move up or down rotating cylinders correspond-
ing to each category. Each cylinder is texture-mapped
with a representative image of its corresponding cate-
gory. The movement is also weighted by a separate
classification decision of Music vs. Speech. In addition
to being a nice demonstration for real-time automatic
audio classification, the GenreGram gives valuable feed-
back both to the user and algorithm designer. Different
classification decisions and their relative strengths are
combined visually, revealing correlations and classifica-
tion patterns. Since the boundaries between musical
genres are fuzzy, a display like this is more informative
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than a single all or nothing classification decision. Figure
5 shows a static snapshot of a GenreGram.

Implementation

All the developed algorithms are integrated under
MARSYAS, a software framework for research in computer
audition. The framework follows a client-server architec-
ture where the server, written in C++, performs all the
numerically intensive computations and the client, written
in JAVA, consists of the graphical user interface. Multiple
clients, possibly in different computers and operating sys-
tems, can be connected simultaneously to the server.
MARSYAS is mainly developed under Linux but also
works under Solaris, Irix, and Windows systems. The soft-
ware is freely distributed under the GNU public license and
can be obtained from

Future Work

We are currently expanding the genre classification hi-
erarchy to more genres, and we are investigating other
semantic descriptions (instrumentation, emotion) as possi-
ble classification categories. Another interesting direction
for future research is the identification of which instruments
are playing in a sound mixture without necessarily separat-
ing them. Of course, more user experiments in musical beat
strength perception, similarity, retrieval, and classification
are planned for the future. Finally, a full prototype music
information retrieval system that will be available for re-
search purposes is planned for the future.

Summary

A series of systems for music analysis and retrieval of
audio signals were presented. These systems work directly
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on raw audio files without attempting to perform polyphonic
transcription. Novel content-aware graphical user interfaces
are used to help the design, development, and evaluation of
these systems. Most of the described systems are integrated
under MARSYAS, a free software framework for research
in computer audition which can be downloaded from http://
www.cs.princeton.edu/~gtzan/marsyas.html
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