C SC 322 Midterm
Thursday, October 25th, 2008 @ 2:30pm in UVic ECS 108

Name: Aaron Williams

Student ID:

Each page is worth 10 marks.

1. Let \(A = p \lor q \rightarrow q \land \neg p \).
 a) Draw the formation tree for \(A \).
 b) Give the inorder traversal of the formation tree.
 c) Use semantic tableau to show that \(A \) is satisfiable.
 d) Show that \(A \) is falsifiable.
 e) Write a formula that is unfalsifiable (a tautology) and whose formation tree has \(A \) as its inorder traversal.

```
\[ A = (p \lor q) \rightarrow (q \land \neg p) \] by precedence rules

\[ \begin{align*}
\text{a)} & \quad \rightarrow \\
\text{b)} & \quad p \lor q \rightarrow q \land \neg p
\end{align*} \]
```

Note: some additional comments are included in these solutions but were not necessary for full marks.

```
\[ A = (p \lor q) \rightarrow (q \land \neg p) \] by precedence rules

\[ \begin{align*}
\text{c)} & \quad p \lor q \rightarrow q \land \neg p \\
\text{d)} & \quad (T \lor T) \rightarrow (T \land F) \equiv T \rightarrow F \equiv F \equiv F
\end{align*} \]
```

\[\text{d)} \quad \text{If } v(p) = T \text{ and } v(q) = T \text{ then } v(A) = F \text{ since } (T \lor T) \rightarrow (T \land F) \equiv T \rightarrow F \equiv F \equiv F \]

\[\text{e)} \quad p \lor ((q \lor q) \land \neg p) \text{ is a tautology since } p \lor ((q \lor q) \land \neg p) \]

\[\equiv p \lor (T \land \neg p) \equiv p \lor \neg p \equiv T \]

\[\text{and its formation tree} \]

\[\begin{align*}
\text{has an inorder traversal} \\
p \lor q \rightarrow q \land \neg p
\end{align*} \]

Since inorder traversals just "remove the brackets"
2. Use the three reduction rules to reduce the Binary Decision Diagram (BDD) that appears below. Show your work.
3. If B is a BDD then $\text{maxTrueSAT}(B)$ is the maximum number of propositions that can be set to True in a model for the formula it represents. For example, if B is the BDD from the previous page then $\text{maxTrueSAT}(B) = 2$ since at most two propositions can be set to True on a path from the root to a True leaf. If B has no True leaves then we write $\text{maxTrueSAT}(B) = \times$.

a) Fill in the blank values for the leaves in an unreduced BDD.

\[
\text{maxTrueSAT} = \begin{cases}
0 & \text{since satisfying assignment sets zero propositions to True} \\
1 & \text{since no satisfying assignments}
\end{cases}
\]

b) Fill in the blank value for this parent in an unreduced BDD.

\[
\text{maxTrueSAT} = \max(6, 8+1) = 9 \checkmark
\]

Since the first proposition is set to True.

\[
\text{maxTrueSAT} = 6 \\
\text{maxTrueSAT} = 8
\]

c) Fill in the blank value for this parent in an unreduced BDD.

\[
\text{maxTrueSAT} = \max(3, x+1) = 3 \checkmark
\]

Since the first proposition is set to True.

\[
\text{maxTrueSAT} = 3 \\
\text{maxTrueSAT} = \times
\]

d) Fill in the blank value for this parent in a reduced BDD.

\[
\text{maxTrueSAT} = \max(5+4, 5+2) = 9 \checkmark
\]

Since the first proposition is set to True and the second proposition can be set to True.

\[
\text{maxTrueSAT} = 5 \\
\text{maxTrueSAT} = 5
\]

e) Suppose B is an independent set BDD for a graph G and $\text{maxTrueSAT}(B) = k$. What can we say about the independent sets in G?

Then G has an independent set of size k, and there are no larger independent sets. That is, the maximum independent set size in G is k. \checkmark
4. The Fibonacci numbers are defined as follows: \(F(0) = 0, F(1) = 1, \) and \(F(n) = F(n-1) + F(n-2) \) for \(n \geq 2. \) Write Prolog code for `fibonacci(N,F)` so that \(F = F(N) \) whenever \(N \) is given as a constant. For example, entering `fibonacci(7,F)` into the interpreter should give the binding \(F = 13. \)

```prolog
fibonacci(0, 0).
fibonacci(1, 1).
fibonacci(N, F) :-
    N > 1,
    N1 is N-1,
    N2 is N-2,
    fibonacci(N1, F1),
    fibonacci(N2, F2),
    F is F1 + F2.
```

5. The decision problem NOT-SAT(\(\mathcal{A} \)) returns true iff \(\mathcal{A} \) is unsatisfiable. The decision problem EQUIV(\(\mathcal{B}, \mathcal{C} \)) returns true iff \(\mathcal{B} \equiv \mathcal{C} \). Explain how EQUIV can be used to solve NOT-SAT.

\[\text{NOT-SAT}(\mathcal{A}) \text{ is equivalent to } \text{EQUIV}(\mathcal{A}, \text{False}). \]
Alternate answer: \(\text{NOT-SAT}(\mathcal{A}) \text{ is equivalent to } \text{EQUIV}(\mathcal{A}, \text{_17p}). \)