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Music Information Retrieval has become an active
area of research motivated by the increasing im-
portance of Internet-based music distribution. In
December 2003, Apple Computer announced it
was selling almost 1.5 million music downloads
per week (www.apple.com/pr/library/2003/dec/
15itunes.html), and some analysts predict that
downloads will account for 33 percent of the music
industry’s sales by 2008 (Zeidler 2003). Online cat-
alogs are already approaching one million songs, so
it is important to study new techniques for search-
ing these vast stores of audio.

One approach to finding music that has received
much attention is Query-by-Humming (QBH). This
approach enables users to retrieve songs and infor-
mation about them by singing, humming, or whis-
tling a melodic fragment. In QBH systems, the
query is a digital audio recording of the user, and
the ultimate target is a complete digital audio re-
cording. The audio waveforms of the query will
have little or no direct similarity to those of the
target audio recording, so QBH systems always

search using some other representation. Most com-
monly, this representation is a sequence of notes
described by pitch and duration. It is possible to
transcribe monophonic queries into note sequences
(although accurate transcription of the monophonic
voice is still an active research area). Polyphonic
target music, however, cannot be automatically
transcribed into melodies. Therefore, most QBH
systems assume that a MIDI or symbolic represen-
tation is available from which a note sequence can
be derived.

Our system uses a database consisting of stan-
dard MIDI files, so one can state the QBH problem
as follows: ‘‘Given a user’s audio query, find
matching melodies in a database of standard MIDI
files.’’ Once the melody is identified, the QBH sys-
tem might offer links to audio files, ring tones, al-
bum titles, card catalog information, sheet music,
or other useful data.

While many researchers have investigated related
problems and have built prototype systems, there
have been few systematic investigations of differ-
ent solutions. It is difficult to compare different
studies, because there are no standard databases
adopted by the community of researchers, and in-
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tellectual property issues inhibit the sharing of mu-
sic to form a standard database. Our work aims to
evaluate different techniques for QBH using a com-
mon framework, the MUSART testbed, so that we
can obtain quantitative information about the rela-
tive performance of different search techniques.

We hope to work with other researchers to com-
pare other systems in the future. One conclusion of
our work is that merely reporting data such as ‘‘90
percent of the time, the correct song is included in
the 10 closest matches’’ is not very meaningful.
Performance is highly sensitive to the quality of
the queries and the material in the database. There-
fore, it is important to compare search algorithms
using a common set of queries and data. We have
compared three classes of algorithms in this
manner.

Another result of our work is a method for study-
ing how retrieval precision is affected by the size of
the database. Because it is difficult to construct a
large music database for research, we would like to
have some idea of how performance will scale as
databases grow large. We present some evidence
that retrieval rates fall very slowly as the database
size increases. This trend is simple to compute and
could be useful to predict performance for any re-
trieval system.

In the next section, we describe our project, the
motivation, and the origins of this research in more
detail, followed by the software architecture of our
testbed. Then, we describe three different search
systems that we have studied. Next, we describe
the performance of these search systems in our
testbed, followed by the general sources of error we
observed that limit QBH performance and a discus-
sion of searching performance as databases grow.
Finally, we present a general discussion and con-
clusions.

The MUSART Project

The MUSART project is a collaboration between
the University of Michigan and Carnegie Mellon
University. Together, we have been exploring the
design of QBH systems (Birmingham et al. 2001;
Hu and Dannenberg 2002; Meek and Birmingham

2002a; Pardo and Birmingham 2002; Shifrin et al.
2002). We have developed a variety of algorithms
based on hidden Markov models and contour
matching. In addition, we have implemented sev-
eral versions of note-sequence-matching algorithms
using dynamic programming.

As our research progressed, it became expedient
for project members to adopt their own data and
methods. As we developed and implemented search
algorithms, we also created new signal-analysis
software, collected new queries, added files to our
databases, and improved our theme-extraction soft-
ware. With so many variables, it was simplest to
hold constant a collection of data and programs in
order to focus on one or two experimental vari-
ables.

After following these procedures for a year or
two, we found it increasingly difficult to compare
systems. They had simply become incompatible.
We feel that this state of affairs in our microcosm
mirrors the state of the field in general (Downie
2002; Futrelle and Downie 2002). Many results
have been published (Ghias et al. 1995; McNab et
al. 1996; Pauws 2002), but evaluation is difficult,
and results are not comparable.

To remedy this situation, at least in our own re-
search project, we created a general testbed that is
capable of hosting all our work on content-based
retrieval. The testbed includes collections of
queries, target data, analysis software, and search
algorithms. Another testbed system is described by
Bainbridge, Dewsnip, and Witten (2002), and, like
this study, their work evaluates different algo-
rithms within a consistent framework. We have in-
tegrated several of our research systems into our
testbed and are able to compare the systems objec-
tively. Some of our data can be shared, and we can
also evaluate algorithms for other researchers using
our testbed.

The Testbed Architecture

The MUSART testbed is hosted on a Linux server
and relies on scripts written in Python to conduct
experiments. The use of Python makes it easily
portable to other operating systems. Our goal is for
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complete tests to run from start to finish without
manual intervention. A typical test begins with a
collection of audio queries, a database of target
MIDI files, and a variety of programs to process au-
dio, process MIDI, and search the database. The
output of a test includes statistical information
about the search results in text and graphical plot
formats. All input and output data can be viewed
using a Web browser so that researchers (in Penn-
sylvania, Michigan, and Washington) can have con-
venient access to all results from all tests.

To support different systems, including various
preprocessing stages, we adopted the model shown
in Figure 1. In this model, the input to the system
consists of queries (generally an audio recording of
someone singing a melody) and targets (generally
MIDI files to be searched). We have a number of
collections of queries and targets, which we store
in a hierarchical directory structure. For any given
test run, we describe the queries and targets of in-
terest as lists of filenames. This allows us to repro-
duce our results even if new files are added to the
database.

In addition to queries and targets, we have inter-
mediate representations. Most search systems con-
vert queries to transcriptions stored as MIDI files
or to pitch contours stored as data in text files. We
usually process standard MIDI file targets with the
ThemeExtractor program (Meek and Birmingham
2001) to obtain short theme files to be searched.
Our scripts will automatically generate these inter-
mediate representations if possible. It is also possi-
ble to import intermediate representations as files
when their construction is not fully automated.

Our system needs the correct target(s) for each
query to evaluate search performance. Because
there may be several versions of a song in the data-
base, we keep a file for each query that lists all the
correct targets. When reporting rank order, we re-
port the lowest-ranking correct target.

Tests of search systems are saved in a ‘‘results’’
directory. Search programs take one query and a
list of targets, and generate match scores indicating
how well the query matches the target. The test
script then collects the results and sorts them to
calculate the rank order of the correct target. The
script produces an easy-to-parse text output sum-

mary for further analysis. The output includes six
items:

• The name of the queries collection file
• The name of the targets collection file
• The search algorithm and any command-line

options used
• The query preprocessor and any command-line

options used
• The match score for each target and the rank

order of the correct target for each query
• Statistical information (the mean rank, average

deviation, standard deviation, and a histogram
of ranks)

The output format assumes full searches in which
the query is compared to every target in the data-
base, but it would be relatively simple to change
this assumption and return less information.

Description of Search Systems

The primary goal of our testbed is to enable objec-
tive comparisons between different search meth-
ods. We have focused on our three best-performing
algorithms. The first applies dynamic programming
string-matching algorithms to match sequences of
pitch intervals and inter-onset interval (IOI) ratios.
The second applies dynamic time-warping algo-
rithms to compare melodic contours. The third
uses a hidden Markov model to account for differ-
ences between queries and targets. We report here

Figure 1. Architecture of
the MUSART testbed.



37Dannenberg, Birmingham, Tzanetakis, Meek, Hu, and Pardo

the results from the best configurations of our algo-
rithms. With two-query transcription systems, two
theme finders, and many variations in the search
algorithms, the space of possibilities is quite large.

Query Transcription

Before describing the search algorithms, we will de-
scribe briefly our query-transcription and theme-
extraction processes. Because queries are
monophonic, our transcriber relies heavily on
fundamental-frequency estimation. A common
method for pitch estimation is autocorrelation
(Roads 1996), which works on the principle that a
quasi-periodic signal is highly correlated with itself
when shifted by multiples of the fundamental pe-
riod. Therefore, the autocorrelation typically shows
a strong peak at the fundamental period. However,
the autocorrelation often has false peaks when
there are strong harmonics. We use the enhanced
autocorrelation technique (Tolonen and Karjalainen
2000) in which a copy of the autocorrelation is
time-stretched by a factor of two and subtracted
from the original. This tends to suppress the stron-
gest effects of harmonics and thereby reduces the
false peaks, leading to more reliable fundamental-
frequency estimates. Queries are processed using a
window size of about 50 msec and a step size of 10
msec. For each 10-msec frame, we record a funda-
mental frequency estimate, or zero if the frame has
either a low-amplitude or a low-autocorrelation
peak.

One of our search algorithms, the Melodic-
Contour search (described below), uses these funda-
mental frequency estimates fairly directly. The
other search algorithms require that we derive a se-
quence of notes from the input query. Notes are re-
corded for any consecutive run of five or more
non-zero pitch estimates (50 msec) that do not
change by more than one semitone. To avoid any
absolute pitch reference and to allow somewhat for
pitch drift, the intervals between these notes are
quantized to semitone intervals. Figure 2 shows a
six-note sung sequence transcribed and segmented
by the transcriber. Gray dots indicate instantane-
ous pitches generated by the transcriber; black bars
indicate pitch-quantized and segmented notes.

Theme Extraction

To optimize searching, the database should consist
of melodies that users are likely to remember. Har-
mony lines, percussion lines, and other material
are not as useful. Our database consists of MIDI
files that we found on the World Wide Web, and
most files include rhythm, harmony, and parts for
at least several instruments. It would be very time-
consuming to extract melodies from all these files
by hand, so we use a program, ThemeExtractor, to
locate themes automatically (Meek and Birming-
ham 2001). This system begins by identifying me-
lodic patterns in a piece of music, and it then
characterizes those patterns according to several
features, including register, rhythmic consistency,
and several ad hoc measures of the degree to which
the pattern might be considered ‘‘interesting.’’
These features are then normalized and weighted
to provide a score for each pattern. Using these
scores, we return what are deemed to be the most
significant phrases in the piece. By searching
themes rather than full MIDI files, we hope to
avoid spurious matches to ‘‘musical filler’’ and at
the same time speed up our search process by con-
densing the size of the data to be searched.

The next three sections describe the three QBH
search algorithms we evaluated in the MUSART
testbed.

Note-Interval/Dynamic Programming Search

The first search algorithm is the Note-Interval or
Dynamic Programming search. This system relies
on segmentation by our query transcriber to esti-
mate note onset times and pitches in audio queries.
Both targets and queries are transformed into se-
quences of note intervals, each of which consists of
a pitch interval and a rhythmic interval. Pitch in-
tervals are quantized to the nearest half step and
range from –12 to �12 half steps. Rhythmic inter-
vals are represented as one of five logarithmically
spaced inter-onset interval ratio (IOIr) values from
–2 to �2 (Pardo and Birmingham 2002). The IOIr
represents the ratio between the duration of the
previous note and the current note.
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Encoding a melody as note intervals is both
tempo-invariant and transposition-invariant, letting
us match queries at a variety of tempi and transpo-
sitions without time-stretching or transposing the
targets. The values at the top of Figure 2 show the
final encoding of the note sequence as duples of
pitch interval and IOIr. The values (–4, 1) in the
box represent the interval between the notes indi-
cated by the other box in the figure.

Similarity between a target and the query is
given by the minimum cost of transforming the
target into the query using three editing operations:
insert a note interval, delete a note interval, and
substitute a note interval in the query for a corre-
sponding one in the target (Pardo and Birmingham
2002; Pardo, Birmingham, and Shifrin 2004). Both
insertion and deletion are fixed-cost operations.
The reward (or cost) of substituting a query note-
interval for a target note-interval is based on the
similarity of the note intervals. Reward for substi-
tution decreases monotonically with distance in ei-
ther IOIr or pitch-interval (Pardo, Birmingham, and
Shifrin 2004).

The highest-reward alignment is calculated by
filling an alignment-matrix, a portion of which is
shown in Figure 3. Notice that because each cell of

the matrix depends only upon cells to the left and
above, the entire matrix can be calculated in a sin-
gle pass. This step takes time proportional to mn,
the product of the lengths of the query and target
interval sequences.

Because it is likely that there will be some sig-
nificant overlap between the query and theme, but
that each will have a beginning or end portion not
covered by the other, we use the local string-
matching algorithm described in Durbin et al.
(1998), which allows a restart whenever the reward
for an alignment drops below zero. The equation
for the local alignment score matrix is given in Fig-
ure 3.

The match score between a target and query is
the highest value in the alignment matrix for the
pair. The match score is taken to be a direct mea-
sure of the similarity between target and query.
Targets are ranked by match score, and the one
with the highest score is deemed the best match to
the query.

Melodic-Contour/Dynamic Time-Warping Search

The Melodic-Contour matcher is based on the idea
that whereas pitch estimation is not too difficult,

Figure 2. Query transcrip-
tion, pitch quantization,
and note segmentation. In-
tervals are labeled above

the graph with pitch inter-
val (in semitones) and IOI
ratios (on a quantized log-
arithmic scale).
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segmentation into notes is very difficult and error-
prone. A segmentation error corresponds to a note
insertion or deletion in note-based approaches, and
at least in some cases this seems to be a major
source of errors. In the melodic-contour approach
(Mazzoni and Dannenberg 2001), time is divided
into equal-length frames, and the fundamental fre-
quency of the query is estimated in each frame.
Similarly, the target melody is split into equal-
length frames, ignoring note boundaries. When
frame boundaries do not line up with note bound-
aries, we use the note that is most contained in the
time frame. Also, because the exact timing of note
endings does not seem to be critical or consistent,
we extend all notes until the next onset, eliminat-
ing rests.

We use two different techniques to deal with
tempo variation. First, we time-scale the target
data using scale factors of 0.5, 1.0, and 2.0. (Finer-
grained scaling does not seem to help.) This en-
sures that the query and the target will be at least
roughly the same tempo for one of the scale fac-
tors. Then, dynamic time-warping (DTW) is used to
find a good alignment of the query to the target.
Dynamic time warping effectively inserts or re-
moves frames to achieve a better match between
two sequences of frames.

Ordinarily, DTW allows rather drastic shifts in
time and tempo to align two contours. With these
unrestricted jumps in time, it is often possible to
match two dissimilar musical contours, leading to
incorrect melody retrieval. The DTW calculation
pattern we use is shown in Figure 4. This pattern
prevents consecutive skips or insertions so that lo-
cal tempo changes are limited to a factor of two.
This was the best pattern among several we tried
for estimating melodic similarity (Hu and Dannen-
berg 2002).

Queries rarely match an entire target in the data-
base, so it is important not to penalize a good
match to some subsequence of a target. Rather
than perform DTW on every subsequence, which
would be very expensive, we can organize the
DTW such that the cost of skipping any prefix and
any suffix of the target is zero. Transposition is
handled by folding all pitches into one octave and
running each search with 24 different quarter-step
transpositions. The primary difference between this
matcher and the Note-Interval matcher is that this
one aligns equal-duration frames rather than notes.
Furthermore, the contour representation is not in-
variant to transposition or tempo change, so we
must search over many different transpositions and
time scales.

Hidden Markov-Model Matching

When auditing a sung query—or indeed any musi-
cal production—a trained ear can recognize certain
problems: pitch drift, intonation problems, rhythm
errors, tempo fluctuations, and so forth. It is quite
common for a music teacher to comment to a stu-
dent that ‘‘the third note was flat,’’ or ‘‘you are
speeding up in the third measure.’’ These two
statements represent two fundamentally different
views of error: the first indicates a belief that a sin-
gle note was ‘‘off,’’ and the second indicates a belief
that a trend is occurring. We refer to these catego-
ries of error as ‘‘local’’ and ‘‘cumulative,’’ respec-
tively, reflecting the scope of the error’s effects.

Johnny Can’t Sing (JCS) (Meek and Birmingham
2002a) is a system supporting the simultaneous
modeling of local and cumulative error in pitch and
rhythm. This system provides a unique opportunity
to examine the relative significance of these two

Figure 3. Calculation of
the best local alignment
score for Note-Interval
search.
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categories. A detailed description of the training
and matching algorithms used by JCS can be found
in a technical report (Meek and Birmingham
2002b).

JCS is an extended Hidden Markov Model
(HMM) (Rabiner 1989) that associates the notes in
a query with the notes in a target through a se-
quence of hidden states. The fundamental errors
(transposition and tempo difference) recommend a
fairly detailed state definition to describe this rela-
tionship. Each alignment of target and query notes
must be considered in each of the possible tempo
and transposition contexts. Consider, for instance,
the octave-invariant pitch class representation:
there are twelve possible transpositions given semi-
tone quantization. Furthermore, we must model
tempo differences. Consider a rhythm quantization
scheme that allows for nine tempo mappings. In a
song with n notes, there are thus 12 � 9 � n states,
ignoring the various alignment or edit permuta-
tions.

In Figure 5a, the conventional HMM dependency
structure is shown. The hidden states S are each
defined by a tuple, si � �E[i], K[i], S�[i]�, and accord-
ing to the first-order Markov assumption, the cur-
rent state depends only on the previous state. E[i] is
the ‘‘Edit’’ type associated with the state, defining
the way in which query and target notes align. K[i]
is the ‘‘Key’’ component, or the transposition relat-
ing the pitch in the target to the pitch in the query.
S�[i] is the ‘‘Speed,’’ or the tempo mapping in the
transformation.

Observations O are assumed to depend only on
the hidden state and are defined by ot � �Pitch,
Rhythm� � �P [t], R[t]�. Given this view of the query
world, we need to determine—using machine-

learning techniques or by arduous hand-labeling—
the probability of each combination of pitch and
rhythm in the query observation given each combi-
nation of alignment, transposition, and tempo in
the hidden state. It quickly becomes infeasible to
explicitly model each of these states. Distributed
state representations help control this complexity.
The idea is to assume some degree of independence
between the components of a model. The second
view isolates the components of a hidden state and
the components of an observation (see Figure 5b),
and it illustrates a more reasonable interpretation of
the dependencies among these components. Only
the previous edit information E determines the like-
lihood of various legal extensions to the alignment.
The transposition K depends on both the previous
transposition and the current edit type, because the
degree of modulation and the current position in
the target influence the probability of arriving at
some transposition level. A pitch observation P de-
pends only on the current edit type and the current
transposition, which tell us which pitch we expect
to observe. The ‘‘emission’’ probability is then sim-
ply the probability of the resulting error, or discrep-
ancy between what we expect and what we see.
There is a similar relationship between the edit
type E, tempo S’, and rhythm observation R.

A simple example illustrates the musical mean-
ing of these elements. Consider the state of the
model where E relates the joining of the first two
target notes to a query note, K is a transposition of
�2 semitones, and S’ is a tempo scaling of 1.25.
The sequence of transformations corresponding to
these components of state is shown in Figure 6,
starting from the original target notes. The result-
ing transformed event is compared with the query

Figure 4. The calculation
for the dynamic time
warping in the Melodic-
Contour search.
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event (shown in black), which is said to have a
pitch error of �1 and a rhythm error, expressed as
a factor, of 0.8.

Comparing the Search Systems

We conducted tests by recording queries and col-
lecting MIDI files for our database. We wanted to
make our tests as realistic as possible, so we gave
no special instructions to singers (such as singing
‘‘ta ta ta’’ to simplify note segmentation), and all
targets are fully polyphonic MIDI files that are au-
tomatically processed to extract themes. The per-
formance of our various algorithms on these tests
is not as good as the performance cited for many
systems in the literature, so, just for the sake of
comparison, we also constructed some easier tests.
The ability to manipulate outcomes by choosing
experimental conditions is a very important obser-
vation. It follows that absolute performance num-
bers have little meaning, but relative performance
can help us to assess different search algorithms.

All of our algorithms return an ordered list of tar-
gets, from best match to worst. The rank of the
correct answer within the list is also computed. To
summarize performance, we count the percentage
of answers at rank � 1, rank � 2, and rank � 3.
We also compute the mean reciprocal rank (MRR).
The MRR is the average value of 1/rank, a value in
the range 0 to 1, with higher numbers indicating
better performance. To simplify reporting, we scale
the MRR to the range 0 to 100.

Figure 5. Possible depen-
dency schema for basic
and distributed state rep-
resentations. Shaded cir-
cles indicate ‘‘hidden’’

states, and white circles
indicate fully observable
states. Arrows indicate
probabilistic dependencies
in the models, which

evolve over time from left
to right. (a) conventional
HMM structure; (b) alter-
native distributed state
structure.

Figure 6. Interpretation
of a JCS state.

(a)

(b)
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‘‘High-Quality’’ Queries

The first set of queries is relatively high in quality,
meaning that the queries follow the melody and
rhythm of the target song and the recordings are of
good quality (i.e., no dropouts or extraneous noise).
We have found in previous studies that our algo-
rithms perform quite well when the queries are
high-quality. Five individuals, none with vocal
training, sang controlled excerpts from eight well-
known folk songs, yielding a database of 160
queries. The HMM search system was tested
against a massive database of 10,000 synthetically
generated targets with a mean length of 40 notes
plus the ten folk-song targets used in the queries.
The singers, for the most part, were familiar with
the folk songs, and sang only contiguous portions
of those songs. Using the full HMM model, 59 out
of 80 queries returned correct targets ranked first,
with an MRR value of 76 (the other 80 were used
for training). The distribution of ranks is shown in
Figure 7. For the remaining data sets, JCS was used
with default parameters and with no training.

The point of this test is to establish that good
performance can be obtained under favorable condi-
tions, namely when queries are fairly in-tune sub-
sequences of the targets. In the next section, we
will see that performance is highly dependent upon
queries and databases. This is one of the reasons
that our testbed is so important for our research.

‘‘Ordinary’’ Queries

We have two more collections of queries that turn
out to be more difficult than the folk-song queries.
Query Set 1 was collected from 10 subjects with no
vocal training who were presented 10 Beatles
songs. After hearing a song once, each singer was
asked to sing the ‘‘most memorable’’ portion of the
piece. No instructions were given as to whether
they should sing lyrics, and subjects varied in this
respect. Subjects were free to try again if they felt
their first attempt was bad for some reason. In
many cases, subjects made more than one attempt,
so there are 131 queries in all. Although most of
the queries are recognizable, many of them do not

correspond very well to the actual songs (as judged
by the authors listening to the queries). Subjects of-
ten skipped from one section to another, creating
melodic sequences that do not exist in the actual
song. It is interesting to note that these fabricated
sequences are often completely convincing and do
not seem to confuse human listeners. Many singers
have mild to severe intonation problems and many
added expressive pitch bends to their singing,
which complicates note identification. Some
queries contain noise caused by touching the mi-
crophone, and some contain bits of self-conscious
laughter and other sounds.

Query Set 2 was collected from a larger number
of subjects. As a class project, students were re-
cruited to record 10 queries each from volunteers,
resulting in a collection of 165 usable queries.
These were all sung from memory and suffer from
many of the same problems as Query Set 1.

The ThemeExtractor program extracted approxi-
mately 11 short ‘‘themes’’ from each target song in
the database. In all of our systems, searching is per-
formed by comparing the query to each theme from
a song. The similarity rating of the best match is
reported as the similarity rating of the song. These
ratings are then sorted to compute the rank order
of the correct song.

Table 1 shows the results of running Query Set 1
against a collection of 258 Beatles songs, for which
there are a total of 2,844 themes. It can be seen
that the matchers are significantly different in
terms of search quality. At least with these queries,
it seems that better melodic similarity and error
models give better search performance.

Figure 7. Distribution of
ranks for the HMM search
algorithm on ‘‘high-quality
queries.’’
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Table 1. Percentage of correct targets returned at or
below ranks 1, 2, and 3, and Mean Reciprocal Rank
(MRR) for Query Set 1

Search Algorithm � 1 � 2 � 3 MRR

Note-Interval 8.4 12.2 13.0 13.4
Melodic-Contour 15.3 19.1 21.4 21.0
Hidden Markov Model 20.6 26.7 29.0 27.0

MRR is reported on a scale from 0 to 100

Table 2. Percentage of correct targets returned at or
below ranks 1, 2, and 3, and Mean Reciprocal Rank
(MRR) for Query Set 2

Search Algorithm � 1 � 2 � 3 MRR

Note-Interval 21.3 27.1 31.6 28.2
Melodic-Contour 27.7 32.3 32.9 32.9
Hidden Markov Model 25.8 30.3 32.9 31.0

Table 2 shows the results of running Query Set 2
against a collection of 868 popular songs. The total
number of themes in this database is 8,926. All
three algorithms performed better on these data
than with Query Set 1, even though there are many
more themes. Unlike in Table 1, where the algo-
rithms seem to be significantly different, all three
algorithms in this test have similar performance,
with an MRR of about 30. The Note-Interval algo-
rithm is about 100 times faster than the other two,
so at least in this test, it seems to be the best, even
if its MRR is slightly lower.

The fact that the Note-Interval algorithm works
well in this test deserves some comment. In previ-
ous work, we compared note-by-note matchers to
contour- or frame-based matchers and concluded
that the melodic-contour approach was signifi-
cantly better in terms of precision and recall (Maz-
zoni and Dannenberg 2001). For that work, we
experimented with various note-matching algo-
rithms, but we did not find one that performs as
well as the contour matcher. Apparently, the note-
matching approach is sensitive to the relative
weights given to duration versus pitch, and match-
ing scores are also sensitive to the assigned edit
penalties. Perhaps also this set of queries favors
matchers that use local information (intervals and

ratios) over those that use more global information
(entire contours).

Sources of Error

We have studied where errors arise in these search
algorithms. As mentioned, the major problem is
that many melodies presented in the queries are
simply not present in the original songs. In Set 1,
only about half were judged to match the correct
target in the database in the sense that the notes of
the melody and the notes of the target corre-
sponded. (See Figure 8.) About a fifth of the queries
partially matched a target, and a few did not match
at all. Interestingly, about one-fourth of the queries
matched material in the correct target, but the
query contained extra repetitions or out-of-order
phrases. An example of this is where subjects alter-
nately hum a melody and a countermelody, even
when these do not appear as any single voice in the
original song. Another example is where subjects
sing two phrases in succession that did not occur
that way in the original song. Sometimes subjects
repeat phrases that were not repeated in the origi-
nal. Ultimately, Query-by-Humming assumes rea-
sonably good queries, and more work is needed to
help the average user create better queries.

Scaling to Larger Databases

Our experimental algorithms are computationally
demanding, so we have limited our studies to
medium-sized databases. The Beatles database used
with Query Set 1 has 2,844 themes extracted from
258 songs. The database used with Query Set 2 has

Figure 8. Distribution of
query problems. We
judged only about half the
queries to directly corre-
spond to the correct target.
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8,926 themes extracted from 868 songs. Themes
have an average of about 41 notes.

Regardless of the algorithm, an interesting ques-
tion is always this: How do the results scale as the
database grows larger? One way to explore this
question is to use the similarity scores to simulate
databases of different sizes without actually re-
running the search.

Let us assume we have a table of melodic dis-
tance scores for Q queries and T targets, and S(q,t)
(where 0 � q � Q, and 0 � t � T) is the distance of
the best match of query q to target t. We also have
a list of correct targets C(q) for each query. Now,
suppose we want to simulate a database of size N
� T for some query q. We construct a ‘‘random’’
database by inserting the correct target C(q) and
N�1 random choices from the set {0. . .T�1} �
{C(q)}. We can compute the rank of the correct tar-
get in such a random database R by counting how
many entries in the database have a lower score
than the score for the correct target:

rank � 1 � {x: x � R and S(q, x) � S(q, C(q))}| |
This gives us the rank for a particular random da-

tabase R, and we would need to run this simulation
many times to estimate the expected rank.

In practice, we want to consider all queries (not
just the single query q) and we want results for all
sizes of databases in order to study the trend. To
accomplish this, we ‘‘grow’’ the random database
for each query. Initially, each query’s database has
only the correct target. Then we grow each data-
base by one target selected randomly from the tar-
gets not yet included. Each time we grow the
database, we compute the number of correct targets
at rank 1, rank 2, etc. These numbers can then be
plotted as a function of database size as in Figure 9,
which is based on Query Set 1 and the Melodic-
Contour search.

Note that the function becomes flat, indicating
that the number of correct answers does not fall off
rapidly as the database size increases. Various func-
tions could be used to approximate and extrapolate
the observed data. Figure 10 shows the Rank 1
curve together with various candidate models of
search performance as a function of database size.

The simplest model is that the search procedure
simply returns a random guess. The expected num-
ber of correct results at rank 1 is y � Q/N, where y
is the number of correct targets returned with rank
1, Q is the number of queries, and N is the data-
base size. This rapidly converges to zero and is a

Figure 9. Number of tar-
gets ranked 1 (bottom
curve), 2 or less, 3 or less
(top curve), and MRR (tri-
angles) as a function of da-
tabase size.
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poor fit to the data (as one would hope!). A slight
modification to this has a set of queries where the
search is perfect, regardless of database size, com-
bined with another set of queries where the search
is ineffective and returns a random guess. The cor-
responding equation is y � c�(Q�c)/N, for some
constant c. Note that in this model, the searches
that really ‘‘work’’ are independent of the database
size. This model, labeled ‘‘Constant�Random’’ in
Figure 10, converges more rapidly to the constant c
than do the observed data.

Another possible model is a power-law model,
y � N�p. The corresponding curve (labeled ‘‘Power
Law’’) is not as ‘‘flat’’ as the observed data. A func-
tion that flattens quickly is the logarithm, so we
tried two forms based on log(N). The equation y �

Q(1 � c•log(N)) does not conform to the observa-
tions (see the ‘‘1�Log’’ curve), but the equation
y � c1/log(c2•N) fits the data reasonably well, albeit
with two parameters (see the ‘‘1/Log’’ curve). Of
course, there is no proof that we can extrapolate
this function to predict behavior with larger data-
bases, but it is encouraging that the function de-
creases slowly. For example, to reduce the number
of correct results at Rank 1 in this model by half,
the database size must be squared.

Figure 11 is similar to Figure 9, but it plots the
MRR from all three search systems using Query
Set 2. These data seem to confirm the general
1/log(N) scaling trend. At least in our limited ex-
amples, the scaling trend seems to be independent
of the set of queries, the database, and the search
algorithm.

These data shows that mean rank is not a good
measure of performance. For example, a ranker that
returns the correct answer ranked first half of the
time and ranked 100th half of the time is a better
performer than one that returns the correct answer
randomly between first and 100th, even though
their mean rank is the same. Figure 12 shows a his-
togram of ranks returned from Query Set 1. There
is some significant fraction of ‘‘correctly matched’’
results with very low ranks (see Figure 12a), but the
rest (queries for which no good match was found)
are almost randomly distributed (see Figure 12b).
The mean rank is the ‘‘center of gravity’’ of this
histogram, and it will obviously grow with the da-
tabase size. On the other hand, the number of low-
ranking correct targets will remain nearly constant
as shown in Figure 11. In these tests, the MRR
seems to be highly correlated with the proportion
of correct answers ranked in the top two or three.

Figure 10. Various models
of database scaling with
observed data for Rank 1.



46 Computer Music Journal

Summary and Conclusions

It is widely understood and agreed that better eval-
uation tools are needed in the field of Music-
Information Retrieval. We have constructed a
Query-by-Humming testbed to evaluate and com-
pare different search techniques. The testbed helps
us to organize experiments by providing explicit
representations and standard formats for queries,
targets, collections (subsets of queries or targets),
preprocessing stages, search algorithms, and result
reporting. A single command can run a complete
test, including the preprocessing of data, searching
for a set of queries, and generating reports. Most of
our testbed, including some of the databases, is
available to other researchers, and we can also col-
laborate with other researchers by adding new
search systems into our testbed. Please contact the
authors for information about formats and APIs.

We have compared three algorithms for music
search that have been reported previously, but we
have never compared them in a ‘‘head-to-head’’
fashion. The Note-Interval algorithm treats music
as sequences of pitch intervals and IOI ratios and
searches for an alignment that minimizes a dis-
tance function. The Contour-Matching algorithm, a
variation of string matching, does not segment the
query into notes, but uses dynamic time-warping
to find the best match to melodic contour. The
HMM approach matches notes using a probabilistic

error model intended to account for the kinds of er-
rors observed in queries.

The Contour-Matching and HMM algorithms are
extremely slow, taking on the order of two seconds
of computation time per entry in the database,
which translates into days of runtime for many of
our tests. Although this may be impractical for
many tasks, we believe it is important to discover
the best search techniques possible in terms of pre-
cision and recall. Until quite recently, these algo-
rithms seemed to outperform all faster approaches.
However, at least on Query Set 2, our current
Note-Interval system delivers similar search qual-
ity with a run time of about 0.02 sec per entry in
the database, making it the clear winner in our
comparison. Interestingly, the HMM and contour-
matching approaches do not make the same mis-
takes, so returning the top choice of each is
superior to returning the top two choices of either
algorithm.

Our work shows a wide range of performance ac-
cording to the quality of queries. When queries
contain a reasonably long sequence of well-sung
pitches, search algorithms can be very effective. On
the other hand, when we collected queries from
general university populations, we found many
queries that were very difficult to match. The wide
range in performance of our systems on different
query sets should serve as a warning to researchers:
performance is highly dependent on queries, so no

Figure 11. MRR as a func-
tion of database size for
three different search algo-
rithms. All three follow
the same general 1/Log
trend.
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comparison is possible without controlling the
query set.

Finally, we propose that the issue of scaling with
database size can be studied by simulation. Given
distance or similarity estimates between queries
and targets, we can plot the expected number of
queries whose correct targets will be ranked 1 (or
in general, less than some rank k). For our algo-
rithms, we found that a 1/log(N) model gives a

reasonable fit to the observed data. This is encour-
aging, because this function becomes very flat as
the database size increases.
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