
Carnegie Mellon University
Research Showcase @ CMU

Computer Science Department School of Computer Science

5-2006

A Comparative Evaluation of Search Techniques
for Query-by-Humming Using the MUSART
Testbed
Roger B. Dannenberg
Carnegie Mellon University, rbd@cs.cmu.edu

William P. Birmingham
Grove City College

Bryan Pardo
Northwestern University

Ning Hu
Google, Inc.

Colin Meek
Microsoft Corporation

See next page for additional authors

Follow this and additional works at: http://repository.cmu.edu/compsci

This Article is brought to you for free and open access by the School of Computer Science at Research Showcase @ CMU. It has been accepted for
inclusion in Computer Science Department by an authorized administrator of Research Showcase @ CMU. For more information, please contact
research-showcase@andrew.cmu.edu.

Published In
Journal of the American Society for Information Science and Technology, 58, 5, 687- 701.

http://repository.cmu.edu?utm_source=repository.cmu.edu%2Fcompsci%2F486&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/compsci?utm_source=repository.cmu.edu%2Fcompsci%2F486&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/scs?utm_source=repository.cmu.edu%2Fcompsci%2F486&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/compsci?utm_source=repository.cmu.edu%2Fcompsci%2F486&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:research-showcase@andrew.cmu.edu

Authors
Roger B. Dannenberg, William P. Birmingham, Bryan Pardo, Ning Hu, Colin Meek, and George Tzanetakis

This article is available at Research Showcase @ CMU: http://repository.cmu.edu/compsci/486

http://repository.cmu.edu/compsci/486?utm_source=repository.cmu.edu%2Fcompsci%2F486&utm_medium=PDF&utm_campaign=PDFCoverPages

Page 1

A Comparative Evaluation of Search Techniques for
Query-by-Humming Using the M USART Testbed

Roger B. Dannenberg, William P. Birmingham, Bryan Pardo,
Ning Hu, Colin Meek, George Tzanetakis

Abstract
Query-by-Humming systems offer content-based

searching for melodies and require no special musical
training or knowledge. Many such systems have been
built, but there has not been much useful evaluation
and comparison in the literature due to the lack of
shared databases and queries. The MUSART project
testbed allows various search algorithms to be
compared using a shared framework that
automatically runs experiments and summarizes
results. Using this testbed, we compared algorithms
based on string alignment, melodic contour matching,
a hidden Markov model, n-grams, and CubyHum.
Retrieval performance is very sensitive to distance
functions and the representation of pitch and rhythm,
which raises questions about some previously
published conclusions. Some algorithms are
particularly sensitive to the quality of queries. Our
queries, which are taken from human subjects in a
fairly realistic setting, are quite difficult, especially for
n-gram models. Finally, simulations on query-by-
humming performance as a function of database size
indicate that retrieval performance falls only slowly as
the database size increases.

Introduction
In “Query-by-Humming” systems, the user sings or

hums a melody and the system searches a musical
database for matches. Query-by-Humming can be
thought of as an automated version of the game
“Name That Tune.” In addition to providing song
titles, Query-by-Humming systems offer an interesting
interface possibility for portable MP3 players, for
digital music search through the web, and for kiosks

offering to sell music. Query-by-Humming is an
alternative to text searches for title, composer, and
artist in digital music libraries. A particularly
interesting feature of Query-by-Humming is that the
user is not required to understand music notation or
any music-theoretical description of the sought-after
content.

Aside from practical benefits, Query-by-Humming
offers many intrinsically interesting challenges for
researchers. At the heart of any Query-by-Humming
system is some model of melodic similarity. There is
never an exact match between a sung query and the
desired content, so a Query-by-Humming system must
ignore the superficial details of the query waveform
and work at more abstract levels in order to make
meaningful comparisons. Many issues arise relating to
the production and perception of music, including how
users remember melody, the limitations of amateurs in
the vocal production of melody, our perception of
melody, and the nature of melodic similarity. There
are also many issues relating to algorithms and
databases, including probabilistic models of error and
melodic distance, efficient search algorithms, and
system architecture. Finally, there are interesting
intellectual property and business issues that bear on
what musical databases can contain, what information
they can provide, and what services can be offered.

We have studied many of the technical aspects of
Query-by-Humming in the MUSART project. In our
investigations, we constructed a number of different
search systems, assembled several experimental
databases, and collected many different queries. We
also built various tools for estimating musical pitches
in sung queries, for transcribing queries into
sequences of notes, and for automatically extracting
musical themes from standard MIDI files. After
working on these various experimental systems for
some time, we found that our work was becoming
fragmented, with incompatible software versions that
could not be compared under controlled conditions.
This state of affairs mirrors what we observe in the
research community at large: While there are many
different research systems with published performance

Published as: Roger B. Dannenberg, William P.
Birmingham, Bryan Pardo, Ning Hu, Colin Meek,
George Tzanetakis. “A Comparative Evaluation
of Search Techniques for Query-by-Humming
Using the MUSART Testbed.” Journal of the
American Society for Information Science and
Technology 58 (3) (February 1, 2007).

A Comparative Evaluation of Search Techniques…

Page 2

measurements, these measurements cannot be
compared. In order to learn more about search
algorithms and their performance, we need carefully
developed tests.

To solve this problem, at least within our project, we
built the MUSART Testbed, a framework for testing
and comparing various approaches to Query-by-
Humming. We adapted our previous work (standalone
experimental software to study various aspects of the
problem) to operate within the testbed, enabling us to
make fair comparisons between different approaches.
The MUSART Testbed includes a database of songs,
collections of recorded audio queries, programs to
extract data from queries and song files, and a
collection of search algorithms. Tests can be run
automatically to evaluate the performance of different
algorithms with different collections of songs and
queries.

We have compared a number of approaches to
Query-by-Humming and obtained some surprising
results. Some sophisticated and computationally
expensive search techniques do not perform much
better than one that is simpler and much faster. We
found search performance is very sensitive to the
choice of distance functions (the likelihood that a
“state” will be transcribed, given a “state” in the
melody). The conclusions of many previous studies
must be considered carefully in this new light.

Due to the problems of collecting and annotating
large databases, our test database is limited in size. To
examine issues of scalability, we estimate
performance as a function of the database size. In all
cases we have examined, the database precision falls
roughly according to 1/log(x) where x is the database
size. This is encouraging because this function is flat,
meaning performance falls very slowly with increases
in database size.

Related Work
Query-by-Humming can be considered a special

case of melodic search given a query that
approximates at least a portion of the melody of a
target song. For example, the query may be a text-
encoded sequence of pitches, rhythms, or a note
sequence recorded from a digital piano keyboard.
Melodic search has been the focus of many studies,
and concepts of melodic similarity are presented in
(Hewlett & Selfridge-Field, 1998). References on
melodic search can be found at www.music-ir.org.
Various approaches have been taken to the problem of

identifying similar melodic sequences. String-
matching approaches using dynamic programming
(Sankoff & Kruskal, 1983) have been popular
(Bainbridge, Dewsnip, & Witten, 2002; Bainbridge,
Nevill-Manning, Witten, Smith, & McNab, 1999;
McNab, Smith, Witten, Henderson, & Cunningham,
1996; Pauws., 2002) and work well with melody, as
we shall see. Another approach uses n-grams, which
are widely used in text retrieval and allow efficient
indexing. (Clausen, Englebrecht, & al., 2000;
Doraisamy & Ruger, 2002, 2003; Downie & Nelson,
2000; Tseng, 1999; Uitdenbogerd & Zobel, 1999)
Another set of techniques rely on statistical models
including Markov and hidden Markov models. (Durey
& Clements, 2001; Hoos, Rentz, & Gorg, 2001; Jin &
Jagadish, 2002; C. Meek & W.P. Birmingham, 2002;
Pardo, Birmingham, & Shifrin, 2004). It should be
noted that there is, at best, a weak distinction between
melodic search based on hidden Markov models and
search based on string matching. (Durbin, Eddy,
Krogh, & Mitchison, 1998; Hu & Dannenberg, 2002;
Bryan Pardo & William P. Birmingham, 2002)

Hsu, et al. (Hsu & Chen, 2001; Hsu, Chen, Chen, &
Liu, 2002) describe their Ultima project, created for
the study, evaluation and comparison various music
search algorithms. Three search algorithms for melody
matching are described and compared using
automatically generated queries. Bainbridge,
Dewsnip, and Witten (2002) describe their workbench
for symbolic music information retrieval in the
Greenstone digital-library architecture. In the reported
experiments, a large folksong database was searched
using synthetically generated queries where
subsequences of songs in the database were altered to
simulate human errors. Like the MUSART testbed, both
the Ultima project and Greenstone workbench
implement several search techniques, provide a
database of melodies, and support experimentation
and comparison of different techniques. Synthetic
queries allow researchers to control query lengths and
error counts, but leave open the question of
performance with real human queries.

Query Processing and Music
Representation

Audio signals cannot be compared directly, as even
two “identical” melodies from the same instrument or
vocalist will have little if any direct correlation
between their waveforms. Therefore, melodic search
must be performed on a higher-level or more abstract

A Comparative Evaluation of Search Techniques…

Page 3

representation. In typical audio recordings, the
mixture of vocals, harmony, bass, and drums results in
a complex waveform that cannot be separated
automatically into symbolic (e.g., notes) or even audio
components. In spite of progress in extracting melody
from recorded audio (Goto, 2000), current systems are
not sufficiently robust to enable effective music
searching. Therefore, Query-by-Humming systems
assume a symbolic representation of music in the
database. We use a database of MIDI files, which
describe the pitch1, starting time, duration, and relative
loudness of every note in a piece of music. Most MIDI
files are organized into a set of tracks, where each
track contains the notes for one instrument. These
representations are normally prepared by hand. They
can also be extracted automatically from machine-
readable music notation if available. In our testbed, we
use MIDI files found on the Web.

Queries, on the other hand, contain only the sound
of one voice, which makes analysis much more
tractable. Depending on the search algorithm, we must
obtain a sequence of fundamental frequency estimates
or a sequence of notes from the query. Our system
analyzes the fundamental frequency of the signal
every 10 milliseconds, using an enhanced
autocorrelation algorithm (Tolonen & Karjalainen,
2000) with a 50 millisecond window size. In this step,
we report “no pitch” when the amplitude is below
threshold or when there is no clear fundamental
indicated by the autocorrelation.

To transcribe the query into notes, we must separate
the frame sequence into notes. Notes begin when there
is a sequence of five or more frames with frequency
estimates that fall within the range of one semitone. In
other words, a note must exhibit a steady pitch. The
note ends when the pitch changes or when no pitch is
detected. Pitch is also quantized from a continuous
scale to the 12-pitches-per-octave Western scale. We
assume that singers do not have an absolute pitch
reference, but that singers attempt to sing exact equal-
temperament pitches. To avoid an absolute pitch
reference, we quantize pitch intervals to the nearest

1 Nomenclature varies somewhat across disciplines.
Scientifically, “pitch” denotes a percept closely
related to the physical property of “fundamental
frequency,” the rate of vibration. Musically, “pitch”
often refers to the musical scale, e.g. C4, C#4, D4,
etc., where the number refers to the octave, and C4 is
“middle C.” We will use pitch in the musical sense
because it is more concise than “the chromatic scale
step corresponding to the fundamental frequency.”

integer number of semitones. In practice, many
singers make significant pitch errors, and the pitch
estimation can introduce further errors, so it is
important for the search algorithms to take this into
account.

Extracting Melody from MIDI
Files

In addition to preprocessing the audio queries, we
also preprocess the database of MIDI files. Complete
MIDI files include much more than just melodies. In a
typical song, the melody is repeated several times.
There is also harmony, drumming, a bass line, and
many notes may be performed by more than one
instrument, e.g., if a violin and flute may play the
same notes, the MIDI file will have separate copies of
the notes for the violin and flute. Searching entire
MIDI files will take more time and could result in
spurious matches to harmonies, bass lines, or even
drum patterns . For both speed and precision, we
extract melodies from MIDI files and search the
melodies. (Tseng, 1999)

We developed a program called ThemeExtractor
(Meek & Birmingham, 2001) to find musical themes
in MIDI files. The principle is simple: melodies are
almost always repeated several times, so if we find
significant sequences that repeat, we will locate at
least most of the melodies. To enhance the accuracy of
melody identification, repeating melodic patterns are
analyzed to obtain various features that include
register (average pitch height), rhythmic consistency,
and other features that help identify patterns that are
“interesting.” (It is common to find repeating patterns
of just one or two pitches, used for rhythm or
accompaniment, and these should not qualify as
“melody.”) The features are weighted to form a score
for each melodic pattern. The patterns with the highest
scores are returned as the most significant melodic
phrases or themes of the piece. Tests indicate that
ThemeExtractor finds a very high percentage of
themes labeled by hand. (Meek & Birmingham, 2001)

Searching for Melody
The MUSART testbed maintains a collection of

themes that have been extracted from the database
using the ThemeExtractor program. We call these
themes the targets of the search. To process a query,
the testbed first processes the audio as described
earlier to obtain a symbolic representation of the
query. Then, the query is compared to every target in

A Comparative Evaluation of Search Techniques…

Page 4

the database. Each comparison results in a melodic
similarity value, and the targets are sorted according
to this similarity. In some searches, distance is
reported rather than similarity, but this only requires
that we sort in the opposite direction.

To measure system performance, we need to know
the rank of the correct target(s) in the sorted list result-
ing from each search. The testbed includes a list of
correct matches for each query. Correct matches are
determined manually by listening and using file
names. Call r the rank of the correct target for a query.

Here, r = 1 indicates the correct target was ranked
first. The mean right rank for a trial is the average
value for r over all queries in the trial. This measure
can be sensitive to poorly ranking outliers. We can
capture the same information in a manner that is less
sensitive to outliers by using the mean reciprocal rank
(MRR). The reciprocal rank is 1/r, and the mean
reciprocal rank is just the mean of the reciprocal rank
over all queries in the trial. If the system always ranks
a correct answer highest (rank 1), the MRR will be 1.

If the system gives random similarity values to targets,
the MRR will be roughly log(N)/N, and the worst
possible MRR is 1/N, where N is the number of targets
in the database. These relations are shown in Equation
1.

1

1

1
1 =

Q

q qrMRR
Q N

=≥ ≥
∑

Equation 1

We have implemented five different search
algorithms for comparison in the MUSART testbed.

These algorithms are now described.

Note Interval Matching
The Note Interval matcher treats melodies as strings

and uses dynamic-programming techniques to align
two strings, resulting in a similarity score.

Figure 1 illustrates the representations used by this
matcher. The Pitch component can be expressed in
two ways:

1. The absolute pitch in MIDI key values (it
cannot be 0 as 0 means silence).

2. The relative pitch, which is the pitch interval
between two adjacent notes that are expressed
in absolute pitches.

Absolute Pitch: 67 69 71 67

Relative Pitch: 2 2 −4

IOI: 1 0.5 0.5 1

IOI Ratio: 0.5 1 2

Log IOI Ratio: -1 0 1

Figure 1. Pitch Interval and IOI Ratio calculation.

The advantage of relative pitch is that
transposition (singing the query in a different key)
amounts to an additive offset to absolute pitch, so
there is no effect on relative pitch. We say that
relative pitch is transposition invariant.

Similarly, there are three different kinds of
representation for the Rhythm component of Ni:

1. The inter-onset-interval (IOI), which is the
time difference between two adjacent note
onsets:
Rather than IOI, one might consider duration,
that is, toffset(Ni) – tonset(Ni). In our
experience, IOI is a better representation for
search than note duration. The beginning of a
note (tonset) is perceptually more salient than
the ending (toffset), and therefore the IOI
seems to be a better indication of the
perceived musical rhythm. Furthermore, the
note offset times detected from the query are
not accurate. Using IOI rather than note
duration amounts to extending each note as
necessary to remove any silence before the
next note. (For the last note, we use duration
for lack of anything better.)

2. The IOI Ratio (IOIR), which is the ratio
between the IOI values of two succeeding
notes:

}7{1,2,...12)(NP iabs ∈
, where

ni1 ≤≤
Equation 2

)(NP)(NP)(NP 1iabsiabsirel −−=
,

where ni1 ≤<

0)N(P 1rel =

Equation 3

)(Nt)(Nt)(NT ionset1ionsetiIOI −= + ,
where ni1 <≤

)(Nt)(Nt)(NT nonsetnoffsetnIOI −=

Equation 4

A Comparative Evaluation of Search Techniques…

Page 5

3. The Log IOI Ratio (LogIOIR) (Bryan Pardo &
W.P. Birmingham, 2002), the logarithm of the
IOI Ratio:

))(Nlog(T)(NT iIOIRiLogIOIR = ,

where ni1 ≤≤
Equation 6

Both IOIR and LogIOIR have the nice property that
they are invariant with respect to tempo. Thus, even if
the query tempo is faster or slower than the target, the
IOIR and LogIOIR values will still match.

A Note Interval combines a pitch interval with a Log
IOI Ratio to form a <Pitch, Rhythm> pair. In the Note
Interval matcher, LogIOIR is quantized to the nearest
integer, and 5 LogIOIR values ranging from −2 to +2
are used. (Bryan Pardo & W.P. Birmingham, 2002)
For example, the full representation of the melody in
Figure 1 would be: <<2, −1>, <2, 0>, <−4, 1>>. In the
Sensitivity Studies section, we consider the effect of
using other representations, but for now, we will
consider only the best-performing configuration
(Pardo et al., 2004) using pitch intervals and
LogIOIRs as the melodic representation.

Using the classic dynamic-programming approach,
the Note Interval matcher computes the melodic
similarity D(A, B) between two melodic sequences

maaaA L21= and nbbbB L21=

by filling the matrix (nmd
KK 1,1). Each entry jid ,

denotes the maximum melodic similarity between the

two prefixes iaa K1 and).1(jwbb jw ≤≤K

 We use a classical calculation pattern for the algo-
rithm as shown:

for 1 ≤ i ≤ m and 1 ≤ j ≤ n,















−

−

+

=

−

−

−−

)(

)(

)(

),(

) (0

max

1,

,1

1,1

,

insertionskipCostd

deletionskipCostd

treplacemen

baonRewardsubstitutid

alignmentlocal

d

bji

aji

jiji

ji

Equation 7
In this formulation, substitutionReward(a, b) is the

reward (similarity) between note intervals a and b.
The skipCosta and skipCostb are penalties for either
deleting a note interval a from the target or inserting

the note interval b found in the query. Local alignment
means any portion of the query is allowed to match
any portion of the target. This is implemented
efficiently simply by replacing any negative value by
zero in the matrix, effectively ignoring any prefix of
the query or target that does not make a good match.
The overall similarity is taken to be the maximum
value in the matrix, which may ignore contributions
from query and target suffixes. The calculation of di,j
is illustrated in Figure 2, showing how the
computation can be organized as a matrix computed
from left-to-right and top-to-bottom.

di-1, j
di-1, j-1

di, j-1 di, j

bj-1 bj

ai

ai-1

Figure 2. Calculation pattern for Simple Note

Interval matcher.

N-Gram Matching
A standard approach in text retrieval is the use of n-

grams, tuples of N words. An index from n-grams to
documents can be constructed, allowing the search
algorithm to consider only those documents that
contain n-grams of interest. In music, n-gram-based
searches can use pitch intervals and/or inter-onset
intervals to retrieve songs.

N-gram approaches generally assume that the query
contains specific n-grams that have a high probability
of occurrence in the correct target and a low
probability of occurrence elsewhere. When multiple n-
grams can be obtained from the query, the probability
of finding most or all of these in any but the correct
target can become vanishingly small. This is
particularly true of text searches, where words are
discrete symbols, and of symbolic music searches,
where pitches and intervals are discrete. With sung
queries, the singing is far from perfect, and
transcriptions to symbolic data contain substantial
errors. There is a tension between choosing long n-
grams (large N) to decrease the probability of
matching incorrect targets, and choosing short n-
grams (small N) to decrease the probability that
singing and transcription errors will prevent any
matches to the correct target.

)(NT

)(NT
)(NT

1iIOI

iIOI
iIOIR

−

= , where

ni1 ≤<

1)(NT 1IOIR =

Equation 5

A Comparative Evaluation of Search Techniques…

Page 6

N-gram search algorithms
Our n-gram search operates as follows: The audio

query is transcribed into a sequence of notes as in the
note-interval search, and note intervals are computed.
Pitch intervals are quantized to the following seven
ranges, expressed as the number of half steps:
 < −7, −7 to −3, −2 to −1, unison, 1 to 2, 3 to 7, >7.

IOI Ratios are quantized to five ranges separated by
the following four thresholds:

 4/2 , 2/2 , 2 , 22 .
Thus, the nominal IOI Ratios are ¼, ½, 1, 2, and 4.
These fairly coarse quantization levels, especially for
pitch, illustrate an important difference between n-
grams and other approaches. Whereas other searches
allow the consideration of small differences between
query intervals and target intervals, n-grams either
match exactly or not at all. Hence, coarse quantization
is used so that small singing or transcription errors are
not so likely to cause a mismatch.

There are two important differences between note
interval matching and n-gram search. First, there is the
obvious algorithmic difference. Secondly, there is the
fact that n-grams are based on exact matching whereas
note interval matching considers approximate matches
through the use of skip costs and replacement costs.
We have not tried to study these two factors
independently, as both degrade search performance
and both are necessary to achieve the efficiency gains
of n-gram search.

N-grams are formed from sequences of intervals. A
set of n-grams is computed for the query and for each
target by looking at the n pitch intervals and IOI
Ratios beginning at each successive note. For
example, trigrams would be formed from query notes
1, 2, and 3, notes 2, 3, and 4, notes 3, 4, and 5, etc.
Note that the IOI for the last note is not defined, so we
use the last note’s duration instead. In Figure 1, the
trigram formed from pitch intervals (2, 2, and −4) and
IOI Ratios (0.5, 1, and 2) before quantization is
 <2, 0.5, 2, 1, −4, 2>.

To compute similarity, we count the number of n-
grams in the query that match n-grams in the target.
Several variations, based on concepts from text
retrieval (Salton, 1988; Salton & McGill, 1983) were
tested. The following are independent design
decisions and can be used in any combination:

1. Count the number of n-grams in the query that
have a match in the target (once matched, n-
grams are not reused; if there are q copies of
ngram in the query and t copies in the target,
the score is incremented by min(q, t)).

Alternatively, weight each n-gram in the
query by the number of occurrences in the tar-
get (i.e. increment the score by t). This is a
variation of term frequency (TF) weighting.

2. Optionally weight each match by the inverse
frequency of the n-gram in the whole database
This is known as Inverse Document
Frequency (IDF) weighting, and we use the
formula log(N/d), where N is the total number
of targets, and d is the number of targets in
which the n-gram occurs.

3. Optionally use a locality constraint: consider
only target n-grams that fall within a temporal
window the size of the query.

4. Choose n-gram features: (a) Incorporate
Relative Pitch and IOI Ratios in the n-grams,
(b) use only Relative Pitch, or (c) use only IOI
Ratios.

5. Of course, n is a parameter. We tried 1, 2, 3,
and 4.

Two-stage search.
It is unnecessary for the n-gram approach to work as

well as note-interval matching or other techniques.
The important thing is for n-grams to have very high
recall with enough precision to rule out most of the
database targets from further consideration. Even if
thousands of results are returned, a more precise
search such as the note-interval matcher can be used
to select a handful of final results. This two-stage
search concept is diagrammed in Figure 3. We
implemented a flexible n-gram search to explore this
possibility.

Complete
Database

N-gram
Search

Note-Interval
Search

Results

Figure 3. A two-stage search using n-gram search
for speed and note-interval search for precision.

Melodic Contour Matching
Our Melodic Contour matcher (Mazzoni &

Dannenberg, 2001) uses dynamic time-warping to
align the pitch contour of the query with that of the
target. This is similar in spirit to the Note Interval

A Comparative Evaluation of Search Techniques…

Page 7

matcher operating with absolute pitch, but there are
significant differences. Most importantly, the Melodic
Contour matcher uses fixed-sized frames of about 100
ms duration rather than notes, which can have any
duration. The advantage of this contour representation
is that there is no need to segment queries into discrete
notes. Segmentation is a difficult problem when users
do not clearly articulate notes, and each segmentation
error effectively inserts or deletes a spurious note into
the query. Users also have problems holding a steady
pitch and making a quick pitch transition from note to
note, resulting in possible pitch errors in the
transcribed queries. In contrast, the contour
representation treats pitch as an almost continuous
time-varying signal and ignores note onsets, so it is
more tolerant of transcription errors.

To match queries to targets, the target melodies are
also split into equal-duration frames. If a frame
overlaps two or more notes, the frame is assigned to
the pitch of the note that occupies the greatest amount
of time in the frame. Notes are extended to the onset
of the next note, eliminating rests.

To deal with tempo variation, we time-scale the
target data by factors of 0.5, 1.0, and 2.0 (finer-grain
scaling does not seem to help.) Then, we use dynamic
time warping (DTW) to align the query frames to the
target frames. We have experimented with different
variations of DTW. (Hu and Dannenberg, 2002) In
some variations, extreme tempo changes are allowed,
allowing a fairly good match by selectively skipping
large portions of target melodies to select pitches that
match the query. This, of course, can lead to false
matches. We had better results with the calculation
pattern shown in Figure 4, which limits the local
tempo change to a factor of two speed-up or slow-
down.

Another important aspect of this matcher is that we
want to allow a query to match any portion of the
target, without requiring a full match. The DTW
algorithm used allows the skipping of any prefix and

any suffix of the target with negligible differences in
run time. This is accomplished by setting d0,j=0 for all
j, allowing the match to begin anywhere in the target
without penalty, and taking the best value in the final
column, allowing the match to end anywhere without
penalty. Transposition is handled by calculating the
contour similarity with 24 different transpositions in
1/24th octave steps. All pitches are mapped to a single
octave by using the actual pitch number modulo 12 in
case the melody has been transposed more than one
octave.

HMM Matching
One of the limitations of the matchers described so

far is that they do not have a detailed model of
different types of errors. In contrast, musicians will
recognize common problems in queries: perhaps the
singer’s pitch will get progressively flatter, a single
high note will be sharp, or the tempo might slow down
or speed up. While the previously described matchers
model a few error types and tolerate others, the
Hidden Markov Model matcher can model many more
error types. This allows a less-than-perfect but still
plausible query to achieve a high similarity score
against its target. In general, there are two types of
errors modeled: “local” errors are momentary
deviations in pitch or tempo, and “cumulative” errors
are the result of a trend.

 “Johnny Can't Sing” (JCS) models local and
cumulative error in pitch and rhythm. A detailed
description of the training and matching algorithms
used by JCS are published (Meek & Birmingham,
2004). JCS is an extended hidden Markov model
(HMM) (Rabiner, 1989) in which the target and query
notes are associated through a series of hidden states.
Each hidden state is defined by a triple

]['],[],[iSiKiEsi = , where E[i] is the “edit” type

that accounts for errors such as skipping, inserting,
merging, or splitting notes, K[i] is the “key” that
accounts for transpositions in pitch between the target

di, j

bj- 1

bj- 2

ai

di- 1, j- 1

di- 2, j- 1 + w(ai- 1, bj)

+ w(ai, bj),

di, j = min

(1 = i = m, 1 = j = n)

di- 1, j- 2 + w(ai, bj- 1)

di- 1, j- 1

di- 1, j- 2

di- 2, j- 1

ai- 2

ai- 1

bj

Figure 4. The calculation for the dynamic time warping in the Melodic Contour search.

A Comparative Evaluation of Search Techniques…

Page 8

and the query, and S’[i] is the “speed” that accounts
for differences in tempo and duration.

Observations are defined by the duple

][],[, tRtPRhythmPitchot == , which is the

pitch and rhythm (IOI) observed in the query. As in
the standard hidden Markov model, the observations
occur with some probability that depends only on a
corresponding hidden state, and the hidden state
depends only on the previous hidden state. Once the
HMM is defined, the goal of the matching algorithm is
to determine the probability of a match between the
target and the query. This involves searching over all
possible sequences of hidden states (which specify
sequences of note alignment, transposition, and
tempo) and then determining the probability of each
observation of pitch and rhythm.

Given the many possible edit types, transposition
amounts, and tempo mappings, the number of states is
huge. JCS deals with this problem by assuming that
the three components of the hidden state are somewhat
independent. Figure 5 illustrates a conventional HMM
structure on the left and the JCS distributed state
structure on the right. In the distributed state structure,
the edit type (E) depends only on the previous edit
type. The “key” or transposition (K) depends on the
previous key and the current edit type. A pitch
observation (P) depends on the current edit type and
key but is independent of tempo. The probability of
the observation depends on the discrepancy between
the observation and the expectation established by the
transposition and the target’s pitch. Similarly, the
observed rhythm (R) depends on the edit type (E) and
tempo (S’), but not on transposition. By factoring the
model into components and assuming independence,
the size of the model is greatly reduced, making
similarity ratings much more tractable.

Figure 6 shows an example of how the components
of a state are combined. The edit (E) indicates that the
first two target notes are joined to match the next note
of the query. The key (K) indicates a transposition of
+2 semitones, and the tempo (S’) indicates a scaling of

1.25. The resulting transformed event represents the
most likely observation given the current hidden
state(s) <E, K, S’>. The actual observation (shown in
black) is higher in pitch and shorter in IOI. It is said to
have a pitch error of +1 (semitones) and a rhythm
error of 0.8 (a factor).

The HMM were trained in a variety of ways, which
are described in another paper. (Meek and
Birmingham, 2004) We summarize the training by
mentioning that we tested various training/test set
partitioning strategies: random, by singer (different
singers in the test and training sets), and by song.

S:

O:

E:

K:

S’:

P:

R:

Figure 5: Dependency schemata for basic and
distributed state HMM representations. Shaded
circles indicate “hidden” states, and white
circles indicate fully observable states. Arrows
indicate probabilistic dependencies in the
models, which evolve over time from left to
right. The conventional HMM structure is
shown at the left, and an alternative distributed
state structure is shown at the right. Note that
the new state S’ is dependent on the states E
and K. In addition, the observations are
dependent on the state S’. Thus, rather than
one state corresponding to one observations, the
definition of “state” and “observation” are now
expanded to include several variables.

The CubyHum Matcher
CubyHum is a QBH system developed at Philips

Research Eindhoven. It uses a edit distance for
melodic search. An interesting aspect of the system is

Figure 6: Interpretation of a JCS state.

A Comparative Evaluation of Search Techniques…

Page 9

that it models errors such as modulation or tempo
change using elaborate rules in the dynamic-
programming calculation. Since dynamic
programming is a special case of HMMs, CubyHum
can be viewed as an alternative to the HMM model of
JCS described above. It would be interesting to
discover that the elaborate mechanisms of JCS could
be replaced by a much faster algorithm. Therefore, we
are particularly interested in comparing the
performance of CubyHum with our algorithms. We re-
implemented the CubyHum search algorithm in our
system, following the published description (Pauws,
2002).

Like the Note Interval matcher, CubyHum uses a
representation based on pitch intervals and IOI ratios.
Pitch intervals are quantized to nine ranges and
assigned values of -4 to 4. IOI ratios are not quantized.
The CubyHum dynamic programming calculation
pattern computes an edit distance that includes five
rules to handle various error types:

• The modulation or no error rule adds a penalty
for pitch interval differences and IOI ratio
differences between corresponding intervals in
the query and the target. Since it is based on
intervals, this error models a transposition or a
tempo change, or both. An isolated pitch or
duration error would be modeled as two
modulations or two tempo changes, respectively.

• The note-deletion rule can be applied when two
intervals of the query sum to one corresponding
interval of the target, implying there is an extra
note in the query. This is essentially a
consolidation rule: the two notes of the query are
consolidated as if the pitch of the first were
changed to that of the second, resulting in a
longer note with the correct pitch interval. There
is a fixed penalty for the extra note, and an
additional penalty for the difference in IOI ratios.

• The note-insertion rule is similar to note deletion;
it handles the case where two pitch intervals in
the target sum to match a single interval in the
query. The two target notes are consolidated into
one note, and a fixed penalty plus a penalty based
on IOI ratios is added.

• The interval-deletion rule skips an interval in the
target, and

• The interval-insertion rule inserts an interval in
the target, adding a fixed penalty plus a penalty
based on IOI ratios.

The CubyHum description (Pauws, 2002) also
presents methods for query transcription and an

indexing method for faster search. In order to focus on
melodic similarity algorithms and to make results
comparable, we use the same query transcription for
testing all of our search algorithms, and we did not
implement the CubyHum indexing method.

Results of the Comparison
Testing was performed using the MUSART testbed

(Dannenberg et al., 2003), which has two sets of
queries and targets. Database 1 is a collection of
Beatles songs, with 2844 themes, and Database 2
contains popular and traditional songs, with 8926
themes. In most instances, we use the mean reciprocal
rank (MRR) to evaluate search performance.

There are two sets of queries, corresponding to the
two databases. Query Set 1 was collected by asking 10
subjects to sing the “most memorable” part after
presenting one of 10 Beatles songs. No instructions
were given as to how to sing, so some subjects sang
lyrics. Subjects were allowed to sing more than one
query if they felt the first attempt was not good, so
there are a total of 131 queries. Most of these can be
recognized, but many do not correspond very well to
the intended targets. Subjects skipped sections of
melody, introduced pitch errors, and sang with pitch
inflections that make pitch identification and note
segmentation difficult. There are also noises from
touching the microphone, self-conscious laughter, and
other sounds in the queries. The total size is about 75
MB for audio, but only 28 KB for transcriptions. The
Database 1 MIDI files occupy about 5.4 MB and the
themes are 0.96 MB.

Query Set 2 is the result of a class project in which
students were asked to find and record volunteers who
sang songs from memory (the target song was not
played for the subject before recording the query). A
total of 165 usable queries were collected, and all
correspond to songs in Database 2. These queries
suffer from the same sorts of problems found in Query
Set 1. The total size is about 125 MB for audio, and 45
KB for transcriptions. The Database 2 MIDI files
occupy about 22 MB, and the themes total 2.2 MB.
Table 1 has additional statistics on the queries and
databases.

Performance of Melodic Comparison
Algorithms

Table 2 shows the results of running Query Set 1
against the 2844 themes of Database 1. One can see
that the matchers are significantly different in terms of
search quality. At least with these queries, it seems

A Comparative Evaluation of Search Techniques…

Page 10

that better melodic similarity and error models give
better search performance.

Table 3 shows the results of running Query Set 2
against the 8926 themes of Database 2. All five
algorithms performed better on this data than with
Query Set 1, even though there are many more
themes. Unlike Table 2, where the algorithms seem to
be significantly different, the top three algorithms in
this test have similar performance, with an MRR near
0.3. The Note-Interval algorithm is about 100 times
faster than the other two, so at least in this test, it
seems to be the best, even if its MRR is slightly lower.

Both CubyHum and n-gram search performed
considerably less well than the others. Pauws says of
CubyHum (Pauws, 2002), “In our singing experiment,
we found that the percentage of errors allowed is in
the range of 20-40%.” It is likely that the MUSART
queries are often much worse than this, but recall that
all of these queries were sung by subjects who were
presumably trying to produce a reasonable query. The

n-gram search is discussed at greater length in the next
section.

The fact that the Note Interval algorithm works well
in this test deserves some comment. In previous work,
we compared note-by-note matchers to contour- or
frame-based matchers and concluded that the melodic-
contour approach was significantly better in terms of
search performance (Mazzoni & Dannenberg, 2001).
For example, in one test, 65% of correct targets were
ranked 1 using melodic contour, while only 25% were
ranked 1 using a note-based search. For that work, we
experimented with various note-matching algorithms,
but we did not find one that performs as well as the
contour matcher. Apparently, the note-matching
approach is sensitive to the relative weights given to
duration versus pitch, and matching scores are also
sensitive to the assigned edit penalties. Perhaps also
this set of queries favors matchers that use local
information (intervals and ratios) over those that use
more global information (entire contours). Because

Table 1: Statistics on Queries and Databases.

 Query Set 1 Query Set 2 Database 1 Database 2

Number of Queries
and Songs

155 131 868 258

Total Notes 3658 2527 365065 112771

Number of Themes - - 8902 2844

Mean No. Themes - - 10 11

Std. Dev. No. Themes - - 5.4 3.6

Mean No. Notes per
Query or Theme

24 19 41 40

Std. Dev. No. Notes per
Query or Theme

14 7 34 31

Mean Duration
(Queries and Themes)

10 s 9.3 s 20 s 19 s

Std. Dev. Duration
(Queries and Themes)

6.5 s 3.2 s 18 s 16 s

Table 2 Mean. Reciprocal Rank (MRR) for
Query Set 1.

Search Algorithm MRR
Note Interval 0.134
N-gram 0.090
Melodic Contour 0.210
Hidden Markov Model 0.270
CubyHum 0.023

Table 3. Mean Reciprocal Rank (MRR) for
Query Set 2.

Search Algorithm MRR
Note Interval 0.282
N-gram 0.110
Melodic Contour 0.329
Hidden Markov Model 0.310
CubyHum 0.093

A Comparative Evaluation of Search Techniques…

Page 11

the Note Interval approach seems to be important, we
explore the design space of a family of related
matchers in later sections.

Performance on Synthetic Data
One might also ask how well these algorithms

perform using synthetic data. For each query, we
constructed a synthetic query by extracting the first n
notes of the first theme of a matching target, where n
is the number of detected notes in the query. Thus, the
synthetic queries are perfect partial matches. Using
dynamic programming on pitch intervals only, the
MRR for Query Set 2 (the larger of the two) is 0.85.
With n-grams of length 3 using pitch intervals and IOI
ratios, the MRR for Query Set 2 is 0.87. These MRRs
are much higher than with any of the search
algorithms using real query data. The MRRs are still
less than perfect (a perfect MRR is 1.0) for several
reasons. First, the quality of some queries is so low
that only a few notes can be extracted, so even the
synthetic queries can be very short. Second, while
most recognizable themes are included in the
database, we did specifically select these distinctive
themes for synthetic queries; instead, many synthetic
queries are constructed from very repetitive
accompaniment lines that might occur in other targets.
Finally, the search algorithms are not optimized to
distinguish exact matches, since these do not occur
with real data, and often ties for first place led to a
rank less than one. Nevertheless, it is clear that the
quality of the query is very important. Any query-by-
humming system design should consider how to get
the best possible queries from its users, regardless of
the search algorithm.

Run-Time Performance
Dynamic programming, used in the Note Interval

matcher, is an O(nm) algorithm, where n and m are the
lengths of the two input strings. Actual run time is of
course dependent on hardware and software
implementation details, but our software averages
about 2.3ms to compare a query to a theme. With
about 10 themes per song, run-time is 23ms per song
in the database using a 1.8GHz Pentium 4 processor,
or 205s for the 8926 songs in Database 2. Nearly all of
the run time, measured as “wall time,” is actually CPU
time, and we estimate that this could be tuned to run at
least several times faster. Additional speed can be
obtained using multiple processors.

Our N-Gram implementation does not use a fast
indexing scheme, but even with linear search, our
implementation averages about 0.2ms per theme,
2.0ms per song, and about 34s to search Database 2.
With an index kept in main memory, we would expect
the run time to be greatly reduced.

Using N-Grams
Recall that the design space for n-grams is fairly

large (96 permutations), so we were unable to test
every one. However, each design choice was tested
independently in at least several configurations. The
best performance was obtained with an n-gram size of
n = 3, using combined IOI Ratios and Relative Pitch
(three of each) in n-grams, not using the locality
constraint, using inverse document frequency (IDF)
weighting, and not using term frequency (TF)
weighting. This result held for both MUSART
databases.

Figures 7 and 8 show results for different n-gram
features and different choices of n. As can be seen,
note interval trigrams (combining pitch and rhythm
information) work the best with these queries and
targets. In general, results are slightly worse without
IDF weighting. Results are also slightly worse with
TF weighting and with the locality constraint.

N-grams in a two-stage search
The n-gram search results are not nearly as good as

those of the note-interval search algorithm (note
interval search has MRRs of 0.13 and 0.28 for the two
databases, vs. n-grams with MRRs of 0.09 and 0.11),
but our real interest is the potential effectiveness of a
two-stage system in which n-grams are used to reduce
the size of the database to something manageable with
a slower but more precise search. There is a tradeoff
here: to make searching more efficient, we want to
reduce the size of the set returned by the n-gram
search, but to insure that the correct result is in that
set, we want to increase the size.

To study the possibilities, consider only the queries
where a full search with the note-interval search algo-
rithm will return the correct target ranked in the top
10. (If the second stage is going to fail, there is little
reason to worry about the first stage performance.)
Among these “successful” queries, the average rank in
the n-gram search tells us the average number of
results an n-gram search will need to return to contain
the correct target. Since the slower second-stage
search must look at each of these results, the possible
speed-up in search time is given by Equation 8.

Page 12

MRR for Database 1

0

0.02

0.04

0.06

0.08

0.1

1 2 3 4

Length (n) of n-gram

M
R

R
IOIR

Pitch

Both

Figure 7. N-gram search results on Database 1.

MRR for Database 2

0

0.02

0.04

0.06

0.08

0.1

0.12

1 2 3 4

Length (n) of n-gram

M
R

R

IOIR

Pitch

Both

Figure 8. N-gram search results on Database 2.

Search Success vs. Fraction of Database

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Fraction of Database Returned from Search

F
ra

ct
io

n
of

 R
es

ul
ts

 C
on

ta
in

in
g

C
or

re
ct

T

ar
ge

t

Database 1

Database 2

Random

Figure 9. Performance of the best n-gram search showing the

proportion of correct targets returned as a function of the
total number of results returned.

Table 4. Fraction of database
and potential speedup.

Database r /N s
1 (Beatles) 0.49 2.06
2 (General) 0.29 3.45

Page 13

where s is the speedup (s ≥ 1), N is the database size,
and r is the mean (expected value of) rank. Table 4
shows results from our two databases. Thus, in
Database 2, we could conceivably achieve a speedup
of 3.45 using n-grams to eliminate most of the
database from consideration.

Of course, we have no way to know in advance
where the n-gram search will rank the correct target,
and n-gram searching takes time too, so this
theoretical speedup is an upper bound. Another way to
look at the data is to consider how results are affected
by returning a fixed fraction of the database from the
n-gram search. Again, considering only queries where
the second-stage search ranks the correct target in the
top 10, we can plot the number of correct targets
returned by the first-stage n-gram search as a function
of the fraction of the database returned. As the fraction
of the database increases from zero to one, the
proportion of correct targets returned goes from zero
to one. A search that just picks results at random
would form a diagonal on the graph (see Figure 9),
whereas a “good” search will have a steep initial
slope, meaning that correct targets usually have a low
rank.

As seen in Figure 9, n-gram search is significantly
better than random, but somewhat disappointing as a
mechanism to obtain large improvements in search
speed. As can be seen, if the n-gram search returns
10% of the database, which would reduce the second-
stage search time ten-fold, about 50% to 65% of the
correct results will be lost. Even if the n-gram search
returns 50% of the entire database, the number of
correct results is still cut by 25% to 40%. These
numbers might improve if the n-gram search returns a
variable number of results based on confidence.

The n-gram search fails on a substantial number of
queries that can be handled quite well by slower
searches. Bainbridge, et al. say “It is known that
music-based n-gram systems are computationally very
efficient and have high recall…” (Bainbridge et al.,
2002), but with our data, we see that about 40% of the
correct Database 1 targets are ranked last, and about
20% of the correct Database 2 targets are ranked last.
A last-place ranking usually means that the target tied
with many other targets with a score of zero (no n-
grams matched). In the event of a tie, we report the
highest (worst) rank. This explains why one of the
curves in Figure 9 drops below the “random”
diagonal. Overall, our results with “real” audio queries

suggest that singing and transcription errors place sig-
nificant limits on n-gram system recall.

Sensitivity Studies
In our studies, we have implemented a number of

QBH systems using string-matching algorithms to
align melodies and rate their similarity, and many
such systems are described in the literature. Our
results have been inconsistent, such that seemingly
small design changes might result in large changes in
performance. We conducted some carefully controlled
experiments to examine the impact of various design
variations on the performance of string-matching
approaches to QBH. This work was conducted within
the MUSART testbed framework so that the results
could be compared directly to our other QBH search
algorithms.

To study design alternatives, we created yet another
matcher that we will call the General Note Interval
matcher. (In a previous publication (Dannenberg &
Hu, 2004), we referred to this matcher as “NOTE-
SIMPLE.”) This matcher is highly configurable, and
while “note interval” implies the use of relative pitch
and IOI ratios, we can actually specify absolute pitch
or any of the rhythm representations (IOI, IOIR, or
LogIOIR). We use a classical calculation pattern for
the algorithm as shown in Figure 10.

The calculation of di,j is given by Equation 9. w(ai,
φ) is the weight associated with the deletion of ai,
w(φ, bj) with the insertion of bj and w(ai, bj) with the
replacement of ai by bj, w(ai, bj-k+1, …, bj) and w(ai-k+1,
…, ai, bj) with the fragmentation and the consolidation
(Hu & Dannenberg, 2002; Mongeau & Sankoff, 1990)
respectively. Fragmentation considers the possibility
that the query is not properly segmented; therefore, a
single note of the target should be split into multiple
notes in order to match a sequence of notes in the
query. On the other hand, consolidation combines
multiple notes in the target to match a single note in
the query. Initial conditions are given by Equation 10.

In order to simplify the algorithm, we define

rNs /= Equation 8

di,0 = di-1,0 + w(ai, φ), i ≥ 1
 (deletion)

d0,j = d0,j-1 + w(φ, bj), j ≥ 1
 (insertion)

and d0,0 = 0

Equation 10

A Comparative Evaluation of Search Techniques…

Page 14

w(ai, φ)= k1 Cdel

w(φ, bj)=k1 Cins
Equation 11

where Cdel and Cins are constant values representing
deletion cost and insertion cost respectively. We also
define the replacement weight

w(ai, φ)= k1 Cdel

)()()()(),(1 jijiji bTaTkbPaPbaw −+−=

Equation 12

where P() can be Pabs() or Prel(), and T() is either TIOI()
or TLogIOIR(). If IOIR is used, then














+−=

)(aT

)(bT
,

)(bT

)(aT
maxk)P(b)P(a)b,w(a

iIOIR

jIOIR

IOIR

iIOIR
1jiji

j

Equation 13

k1 is the parameter weighting the relative importance
of pitch and time differences. It is quite possible it can
be tuned for better performance, but in this
experiment, we arbitrarily picked k1 = 1 if the Rhythm
form is IOI or IOIR and k1 = 6 if the form is LogIOIR.
Those values achieved reasonable results in our initial
experiments.

The equations for computing fragmentation and con-
solidation (Hu & Dannenberg, 2002; Mongeau &
Sankoff, 1990) are only used in the calculation pattern
when the Rhythm input is in IOI form, as our previous
experiments based on IOI (Hu & Dannenberg, 2002)
prove that fragmentation and consolidation are benefi-
cial to the performance. We do not use fragmentation
or consolidation for the Rhythm input in IOIR or
LogIOIR form, since fragmentation and consolidation
do not really make sense when dealing with ratios.

di-1, j
di-1, j-1

di, j-1 di, j

bj-1 bj

ai

ai-1

bj-2

ai-2

Figure 10. Calculation pattern for General Note

Interval matcher.

If the algorithm is computed on absolute pitches, the
melodic contour will be transposed 12 times from 0 to
11 in case the query is a transposition of the target.
(Hu & Dannenberg, 2002) Also the contour will be
scaled multiple times if IOI is used. Both transposition
and time scaling will increase the computing time in
proportion to the number of transpositions and scale
factors used.

The General Note Interval matcher does not
completely emulate the Note Interval matcher (Pardo
et al., 2004) described earlier. In particular, the Note
Interval matcher uses a different calculation pattern
that supports local alignment, whereas the General
Note Interval matcher always performs a forced
alignment of the entire query to any contiguous
subsequence of the target. Furthermore, the Note
Interval matcher normalizes its penalty and reward
functions to behave as probability functions.

Table 5 contains some results obtained from the
General Note Interval matcher for different
representations of melodic sequence using Query Set
2. For each of these tests, the insertion and deletion
costs were chosen to obtain the best performance. The
combination of Relative Pitch and Log IOI Ratio
results in the best performance. One surprise is that

for 1 ≤ i ≤ m and 1 ≤ j ≤ n,

















≤≤+

≤≤+
+

+
+

=

+−−−

+−−−
−−

−

−

)(

}2),,,({
)(

}2),,,,({
)(),(

)(),(

)(),(

min

1,1

11,

1,1

1,

,1

,

ionfragmentat

jkbbawd
ionconsolidat

ikbaawd
treplacemenbawd

insertionbwd

deletionawd

d

jkjikji

jikijki

jiji

jji

iji

ji

K

K

φ
φ

 Equation 9

A Comparative Evaluation of Search Techniques…

Page 15

Absolute Pitch is consistently worse than Relative
Pitch, even though Absolute Pitch searches are
performed with the query transposed into all 12
possible pitch transpositions. This must mean that
there is often significant modulation (change of
transposition) in the middle of queries. With Relative
Pitch, such a modulation will only affect one pitch
interval and, therefore, contribute less to the overall
estimate of melodic distance.

Table 5. Retrieval results using various representa-
tions of pitch and rhythm, Query Set 2.

Representations MRR
Absolute Pitch & IOI 0.019
Absolute Pitch & IOIR 0.045
Absolute Pitch & LogIOIR 0.052
Relative Pitch & IOI 0.103
Relative Pitch & IOIR 0.136
Relative Pitch & LogIOIR 0.232

The relationship between the insertion and deletion

costs is another interesting issue to be investigated.
Table 6 shows the results from different combinations
of insertion and deletion costs using the best
representations for pitch and rhythm (Relative Pitch
and LogIOIR). Note that these values are scaled by k1
= 6.

Table 6. Retrieval results using different insertion

and deletion costs.

Cins : Cdel MRR
0.5 : 0.5 0.129
1.0 : 1.0 0.148
2.0 : 2.0 0.161
1.0 : 0.5 0.116
1.5 : 1.0 0.136
2.0 : 1.0 0.129
0.5 : 1.0 0.174
1.0 : 1.5 0.200
0.2 : 2.0 0.219
0.4 : 2.0 0.232
0.6 : 2.0 0.232
0.8 : 2.0 0.226
1.0 : 2.0 0.213

The main point of Tables 5 and 6 is that design

choices have a large impact on retrieval performance.
The General Note Interval matcher does not perform
quite as well as the Note Interval matcher algorithm
described earlier, perhaps because it normalizes the

replacement cost function to behave as a probability
distribution and uses local alignment. Further tuning
might result in more improvements.

In particular, notice that a change in representation
from absolute pitch to relative pitch results in a huge
performance increase (from 0.052 to 0.232). Even a
change from IOIR to LogIOIR produces a significant
performance increase (from 0.135 to 0.232). Insertion
and deletion costs are also critical. Cins : Cdel values of
1.0 : 1.0 result in an MRR of only 0.148 while values
of 0.6 : 2.0 yield an MRR of 0.232.

Overall, we conclude that the system is quite
sensitive to parameters. Best results seem to be
obtained with relative pitches, Log IOI Ratios, and
carefully chosen insertion and deletion costs. Previous
work that did not use these settings may have drawn
false conclusions by obtaining poor results.

Sources of Error
We have studied where errors arise in the queries.

The major problem is that many melodies as sung in
the queries are simply not present in the original
songs. In Set 1, only about half were judged to match
the correct target in the database in the sense that the
notes of the melody and the notes of the target were in
correspondence (see Figure 11). About a fifth of the
queries partially matched a target, and a few did not
match at all. Interestingly, about one fourth of the
queries matched material in the correct target, but the
query contained extra repetitions or out-of-order
phrases. An example is where subjects alternately hum
a melody and a countermelody, even when these do
not appear as any single voice in the original song.
Another example is where subjects sing two phrases in
succession that did not occur that way in the original
song. Sometimes subjects repeat phrases that were not
repeated in the original. The presence of non-matching
melodic material in the query should favor the local
alignment policy used in the Note Interval matcher.
Ultimately, query-by-humming assumes reasonably
good queries, and more work is needed to help the
average user create better queries.

Scaling to Larger databases
We have focused our work on melodic similarity.

Because some algorithms are quite slow and do not
offer a fast indexing method, we have worked with
databases that are limited in size.

A Comparative Evaluation of Search Techniques…

Page 16

Good Match

Partial Match

Out-of-order or repetition

No Match

Figure 11: Distribution of query problems. We
judged only about half the queries to have a
direct correspondence to the correct target.

An interesting question is how does search
performance change as a function of the database size.
Will search scale up to larger databases? We can
explore this question by simulating databases using
random subsets of our full database. We could
implement this idea by altering the MUSART databases
and running a full test on each new database, but this
could take a long time. Instead, we compute the
similarity rating for every query-target pair just once,
and then simulate results with different database sizes.

Assume there are Q queries, T targets, and we have
a table of melodic similarity ratings, S(q, t), 0 ≤ q < Q
and 0 ≤ t < T. We also know the correct target C(q) for
each query q. To simulate a search for a query q in a
random database of size N < T, we first construct the
random database consisting of C(q) and N−1 targets
randomly selected from {0…T−1}−{C(q)}. Calling
this random database R, the rank of the correct target

C(q) will be:

rankR,N = 1 + |{x: x∈R and
S(q, x) ≥ S(q, C(q))}|

Equation 14

In practice, we can “grow” the random database one
target at a time. The rank after adding a new target tnew
will be the same as without the target if tnew is less
similar to the query than the correct target. Otherwise,
the rank will be one greater:





 <

+=+

 otherwise1
)),(,(
),(if0

rankrank NR,1NR, qCqS
tqS new

Equation 15

After simulating different database sizes for all
queries, we can plot the MRR as a function of
database size as shown in Figure 12, which shows an
estimated MRR as a function of database size using
Note Interval, Melodic Contour, and HMM matchers.
Note that all three matchers have similar MRR curves,
and all three curves become very flat as the database
size grows. This is encouraging because we would
like a high MRR even in a much larger database.

The function becomes quite flat as the database
grows. Figure 13 shows various analytic functions
fitted to the observations. As a baseline, the curve
labeled “Random Guess” shows the performance
where the search algorithm simply selects a target at
random. As expected, the MRR for random guessing
approaches zero quickly as the database size grows.

MRR vs Database Size

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000
Database Size

M
R

R

Melodic Contour

Note Interval

HMM

Figure 12: MRR as a function of the number of songs in the database, using subsets of

Database 1. Each song represents an average of 10 themes.

A Comparative Evaluation of Search Techniques…

Page 17

Another model is that certain queries are of good
quality and match unambiguously, no matter how
large the database, while other queries are so poor that
the matcher essentially returns a random guess. This
model is labeled “Constant+Random,” and it is much
flatter than the true MRR curve. Another possibility is
1−log(N), labeled “1−Log,” but it can be seen that this
model does not fit the observed data very well.

Two models that fit the data quite well are the power

law model, N
−p

, labeled “Power Law,” and the

function c1/log(c2⋅N), labeled “1/Log.” In an earlier
study using the fraction of searches that return the
correct target at rank 1, we concluded that the “1/Log”
function offered the best fit. However, after examining
more data and using the MRR rather than Rank = 1 to
measure performance, there is no clear difference
between these functions. In any case, this exercise in
curve-fitting is only a way of describing the observed
data, and we cannot claim that either the 1/log or the
power law function is “correct” in any mathematical
sense. Nevertheless, it is encouraging that the
performance scales reasonably well.

Summary and Conclusions
Query-by-Humming systems remain quite sensitive

to errors in queries, and in our experience, real audio
queries from human subjects are likely to be full of
errors and difficult to transcribe. This presents a very
challenging problem for melodic similarity
algorithms.

By studying many configurations of note-based
string-alignment algorithms, we have determined that

(1) these algorithms are quite competitive with the
best techniques including melodic contour search and
HMM-based searching, but (2) parameters and
configuration are quite important. Previous work has
both overestimated the performance of note-based
string-alignment searching by using simple tasks and
underestimated the performance by failing to use the
best configuration.

We re-implemented the CubyHum search algorithm
and found that it performs poorly compared to a
simpler but well-tuned note-based string-alignment
algorithm. Since we did not attempt to replicate the
entire CubyHum system including audio transcription,
it is possible that there are system-level interactions
and dependencies that we have not considered. Also,
CubyHum was obviously developed and tuned on
better queries and with hand-crafted targets, so it may
not be meaningful to test it under a different set of
assumptions.

We also studied the use of n-grams for query-by-
humming. Overall, n-grams perform significantly
worse than other melodic-similarity-based search
schemes. The main difference is that n-grams (in our
implementation) require an exact match, so the search
is not enhanced by the presence of approximate
matches. Also, intervals must be quantized to obtain
discrete n-grams, further degrading the information.

We considered the use of n-grams as a “front end” in
a two-stage search in which a fast indexing algorithm
based on n-grams narrows the search, and a high
precision algorithm based on edit distance, contour
matching, or HMMs performs the final selection. We

Approximation of MRR

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000

Database Size

M
R

R

1-Log

Constant+Random

Random Guess

Power Law

1/Log

Observed MRR

Figure 13: Various models of database scaling with observed data for MRR.

A Comparative Evaluation of Search Techniques…

Page 18

conclude that there is a significant trade-off between
speed and precision.

Of course, we could not explore all possible n-gram
approaches, so it is always possible that n-gram search
could be improved. (And this was our project’s
experience with string-alignment-based searching.)
Nevertheless, we believe our results form a good
indication of what is possible with n-gram searches
applied to “real world” queries of popular music from
non-musicians.

In conclusion, we have found various algorithms for
QBH that perform well with “realistic” audio queries.
Nevertheless, the overall performance of QBH
systems is quite dependent upon the quality of queries.
Users must recall and reproduce melodies at least
approximately for any search method to succeed.
Another constraint is that the most successful
algorithms lack a fast indexing mechanism, so all have
a runtime that is linear in the size of the database. The
Note Interval search uses a simple and efficient string-
alignment approach and therefore seems most
promising for applications. We hope that this
comparative study using real audio queries will
provide some useful insight into the overall problems
and potential of query-by-humming search systems.

Acknowledgements
We gratefully acknowledge the support of the

National Science Foundation under grant IIS-
00859452. The opinions in this paper are solely those
of the authors and do not necessarily reflect the
opinions of the funding agency. Thanks to Dominic
Mazzoni and Mark Bartsch for initial implementation
of some testbed components. Thanks to Chee Kiat,
Crystal Fong, and David Murray for help with data
collection and analysis. Finally, thanks to the
organizers and reviewers at ISMIR 2003 and ISMIR
2004, where some of this information was first
presented.

References

Bainbridge, D., Dewsnip, M., & Witten, I. H. (2002).

Searching Digital Music Libraries. Paper
presented at the Digital Libraries: People,

2 The majority of this work was done while the
authors Birmingham, Meek and Pardo were at The
University of Michigan, Ann Arbor, Electrical
Engineering and Computer Science Department.

Knowledge, and Technology: 5th International
Conference on Asian Digital Libraries, Singapore.

Bainbridge, D., Nevill-Manning, C. G., Witten, I. H.,
Smith, L. A., & McNab, R. J. (1999). Towards a
Digital Library of Popular Music. Paper
presented at the International Conference on
Digital Libraries, Berkeley, CA.

Clausen, M., Englebrecht, R., & al., e. (2000). Proms:
A web-based tool for searching in polyphonic
music. Paper presented at the The International
Symposium on Music Information Retrieval.

Dannenberg, R. B., Birmingham, W. P., Tzanetakis,
G., Meek, C., Hu, N., & Pardo, B. (2003). The
MUSART Testbed for Query-by-Humming
Evaluation. Paper presented at the ISMIR 2003
Proceedings of the Fourth International
Conference on Music Information Retrieval,
Baltimore, MD.

Dannenberg, R. B., & Hu, N. (2004, October).
Understanding Search Performance in Query-By-
Humming Systems. Paper presented at the ISMIR
2004 Fifth International Conference on Music
Information Retrieval Proceedings, Barcelona.

Doraisamy, S., & Ruger, S. (2002). A Comparative
and Fault-tolerance Study of the Use of N-grams
with Polyphonic Music. Paper presented at the
ISMIR 2002, Paris, France.

Doraisamy, S., & Ruger, S. (2003). Robust
Polyphonic Music Retrieval with N-grams.
Journal of Intelligent Information Systems, 21(1),
53-70.

Downie, J. S., & Nelson, M. (2000). Evaluation of a
simple and effective music information retrieval
method. Paper presented at the Proceedings of
ACM SIGIR.

Durbin, R., Eddy, S., Krogh, A., & Mitchison, G.
(1998). Biological sequence analysis: Cambridge
University Press.

Durey, A. S., & Clements, M. A. (2001). Melody
Spotting Using Hidden Markov Models. Paper
presented at the 2nd Annual International
Symposium on Music Information Retrieval,
Bloomington, IN.

Goto, M. (2000, June 2000). A Robust Predominant-
F0 Estimation Method for Real-time Detection of
Melody and Bass Lines in CD Recordings. Paper
presented at the Proceedings of the 2000 IEEE
International Conference on Acoustics, Speech
and Signal Processing.

Hewlett, W., & Selfridge-Field, E. (Eds.). (1998).
Melodic Similarity: Concepts, Procedures, and
Applications (Vol. 11). Cambridge: MIT Press.

Hoos, H., Rentz, K., & Gorg, M. (2001). GUIDO/MIR
- an Experimental Musical Information Retrieval
System based on GUIDO Music Notation. Paper

A Comparative Evaluation of Search Techniques…

Page 19

presented at the International Symposium on
Music Information Retrieval, Bloomington, IN.

Hsu, J. L., & Chen, A. L. P. (2001). Building a
Platform for Performance Study of Various Music
Information Retrieval Approaches. Paper
presented at the 2nd Annual International
Symposium on Music Information Retrieval,
Bloomington, IN.

Hsu, J. L., Chen, A. L. P., Chen, H.-C., & Liu, N.-H.
(2002). The Effectiveness Study of Various Music
Information Retrieval Approaches. Paper
presented at the Conference on Information and
Knowledge Management, McLean, VA.

Hu, N., & Dannenberg, R. B. (2002). A Comparison of
Melodic Database Retrieval Techniques Using
Sung Queries. Paper presented at the Proceedings
of the second ACM/IEEE-CS joint conference on
Digital libraries.

Jin, H., & Jagadish, H. V. (2002). Indexing Hidden
Markov Models for Music Retrieval. Paper
presented at the ISMIR 2002 Conference
Proceedings.

Mazzoni, D., & Dannenberg, R. B. (2001). Melody
Matching Directly From Audio. Paper presented
at the 2nd Annual International Symposium on
Music Information Retrieval, Bloomington,
Indiana.

McNab, R. J., Smith, L. A., Witten, I. H., Henderson,
C. L., & Cunningham, S. J. (1996). Towards the
digital music library: Tune retrieval from
acoustic input. Paper presented at the Proceedings
of the first ACM international conference on
Digital Libraries.

Meek, C., & Birmingham, W. P. (2001). Thematic
Extractor. Paper presented at the 2nd Annual
International Symposium on Music Information
Retrieval, Bloomington, Indiana.

Meek, C., & Birmingham, W. P. (2004). A
comprehensive trainable error model for sung
music queries. Journal of AI Research (JAIR), 22,
57-91.

Mongeau, M., & Sankoff, D. (1990). Comparison of
Musical Sequences. In W. Hewlett & E.
Selfridge-Field (Eds.), Melodic Similarity
Concepts, Procedures, and Applications (Vol.
11). Cambridge: MIT Press.

Pardo, B., & Birmingham, W. P. (2002, October 13-
17). Encoding Timing Information for Musical
Query Matching. Paper presented at the ISMIR
2002 Conference Proceedings, Paris, France.

Pardo, B., & Birmingham, W. P. (2002). Improved
Score Following for Acoustic Performances.
Paper presented at the Proceedings of the 2002
International Computer Music Conference,
Gothenburg, Sweden.

Pardo, B., Birmingham, W. P., & Shifrin, J. (2004).
Name that Tune: A Pilot Studying in Finding a
Melody from a Sung Query. Journal of the
American Society for Information Science and
Technology, 55(4).

Pauws, S. (2002). CubyHum: A Fully Operational
Query-by-Humming System. Paper presented at
the ISMIR 2002 Conference Proceedings, Paris,
France.

Rabiner, L. (1989). A tutorial on hidden Markov
models and selected applications in speech
recognition. Proceedings of IEEE, 77(2), 257-
286.

Salton, G. (1988). Automatic Text Processing: The
Transformation, Analysis, and Retrieval of
Information by Computer: Addison-Wesley.

Salton, G., & McGill, M. J. (1983). Introduction to
Modern Information Retrieval: McGraw-Hill.

Sankoff, D., & Kruskal, J. B. (1983). Time Warps,
String Edits, and Macromolecules: The Theory
and Practice of Sequence Comparison. Reading,
MA: Addison-Wesley.

Tolonen, T., & Karjalainen, M. (2000). A
computationally efficient multi-pitch analysis
model. IEEE Transactions on Speech and Audio
Processing, 8(6), 708-716.

Tseng, Y. H. (1999). Content-based retrieval for
music collections. Paper presented at the
Proceedings of the 22nd Annual International
ACM SIGIR Conference on Research and
Development in Information, Berkeley, CA.

Uitdenbogerd, A., & Zobel, J. (1999). Melodic
Matching Techniques for Large Music Databases.
Paper presented at the Proceedings of the 7th
ACM International Multimedia Conference.

	Carnegie Mellon University
	Research Showcase @ CMU
	5-2006

	A Comparative Evaluation of Search Techniques for Query-by-Humming Using the MUSART Testbed
	Roger B. Dannenberg
	William P. Birmingham
	Bryan Pardo
	Ning Hu
	Colin Meek
	See next page for additional authors
	Published In
	Authors

