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Introduction

Over 800 hillion lines of code exist worldwide written in
more that 500 languages

Operating platforms and supporting utilities evolve
constantly

Research task:

— provide support for massive source code changes

— alow for legacy code to be kept up-to-date

— support custom designed performance enhancements



Related Work

* Three basic approaches to the problem:
— Formal methods & language semantics
— Grammar-based parse tree transformations
— Repository-based transformation rules

« Pattern matching is akey ingredient of all approaches:
— Mapping patterns from one language to another
— Syntax-directed editing
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Source Code Representation

If(OPTION > 0) THEN
SHOW_MENU(OPTION)
ELSE
SHOW_ERROR(“Invalid
option”)
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Repository

* Rig example:

Type parse.c File
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A Case Study

Work with a 300KLOC legacy software system of highly
optimized code written in PL/IX

Components of this system need to be trandated to C++

Develop tools which semi-automate the translation process
to C++

Make sure that translated code performs as well as the
original code



Methodology

First migration effort was completed by hand; an expert
programmer required ~10weeks to migrate 7.8KLOC

Prototype migration tools were based on the heuristics used
by the expert

Migrated code was 50% slower than original; expert
Identified bottlenecks and hand-transformed migrated code
so that it performs much faster.

Expert heuristics were, again incorporated into the tool



PL/IXto C++

e The transformation process consists of three main steps:

— Transform PLI/IX declaration items and data types to
their corresponding C++ datatypes

— Generate support C++ libraries (macros for reference
components, class definitions for mgor data structures)

— Generate C++ source code that is structurally and
behavioraly similar to the legacy source code



Type Transformations




PL/IX to C++

dcl defineC_MAX _OPNDS2**11-1
11 bag based REFLECT ATTR, struct any L BAG{
union BAG {
2 bag bit(32), int bag;
2%, structany L BAG 2{
3 oper_count bit(16), short int  oper_count;
max_opnds lit('2**11-1),
3 opcd bit(16), short int opcd,;
};
2%, structany L BAG 6
3ind bit(8), unsigned char ind;
3 X bit(24), Int X:24;
};



PL/IX to C++

dsinit: proc(pn); class Dsinit {
var_containing: proc; public:
....... static void dsinit(int pn);
end procedure var_containing; private:
static void var_containing();
overlap: proc(ml,m2) static void overlap(int m1, int m2);
-------- };

end procedure dsinit;



PL/IXto C++

dsmrgs proo(bb,always) returns(integer) exposed; || Nt Psmrgs:dsmrgs(int bb, boolean always)

dcl bb integer value, {_
aways  bit value, Int bb;
@i, integer; boolean always,
int I 1;

| = make _empty_list;
if ns(bb) =0
then | = merge(1,l) ;

else

do | =fs(bb) to fs(bb)+ns(bb)-1;

| = merge(succ(i),l);
end;
return(l);
end procedure dsmrgs;

—

| = make_empty_list();
if ((C_NS(bb) ==0)) {
| = Dsmrgs.:merge(1, 1) ;
}
else{
for (i = C_FS(bb) ; i <= ((C_FS(bb) +
C NS(bb)) - 1); i++)
| = Dsmrgs.:merge(C_SUCC(i), I);
}

return|;



Overall System Performance
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Human Effort




Conclusions

Semi-automatic transformation of large volume of codeis
feasible

Migrated code suffers no deterioration in performance
Incremental migration process feasible

Technique readily applicable to PL/xx family of languages
Technique reduces migration effort by afactor of 10

New prototype for C to RPG transformations targeting AS/400
users



