Software Evolution
Through Program Transformations:
An Experience Report

Kostas Kontogiannis,
Johannes Martin
Kenny Wong
Richard Gregory
Hausi Muller
John Mylopoulos

Introduction

Over 800 hillion lines of code exist worldwide written in
more that 500 languages

Operating platforms and supporting utilities evolve
constantly

Research task:

— provide support for massive source code changes

— alow for legacy code to be kept up-to-date

— support custom designed performance enhancements

Related Work

* Three basic approaches to the problem:
— Formal methods & language semantics
— Grammar-based parse tree transformations
— Repository-based transformation rules

« Pattern matching is akey ingredient of all approaches:
— Mapping patterns from one language to another
— Syntax-directed editing

System Architecture
<> _I <>
= -
T e TR

Source Code Representation

If(OPTION > 0) THEN
SHOW_MENU(OPTION)
ELSE
SHOW_ERROR(“Invalid
option”)

STAT EMENT
IF

ten-clag se

STATEMENT
Call

concition else-clause

FPREDICATE
GT

STATEMEMNT
CalL

fanout fanout
S S
argumentl argurnent2 calles+d caller-list callee-d ca]lei
IDEMTIFIER LITER AL IDEMTIFIER IDEMTIFIER IDEMTIFIER LITER &AL
REFEREMCE INTEGER FREFEREMCE REFEREMCE REFEREMCE STRING
fanout
a—-
ok fire d+eme inte gervalue de fined-name defre drame de fined-name defire drame
QP THOM u] SHOW _ QOPTIOMN SHOW _ "Inwalid
FAEML ERROR option.."
~Le=gend
MNODE
P& ME = A85T node

| = Link from parent
attribute name to child via a
named attribute.

= Fanout attribute
containing integer
value V.

|
fanout
—

Repository

* Rig example:

Type parse.c File

Fi | ed obal s parse.c menory table

Fi |l ed obal s parse.c assi gnnment _parse
Fi |l eLocal s parse.c si npl e_pattern_parse
| ncl udes parse. c menory. h

e Telosdomain model example:
(File Sclass (R gidass Refined ass)
(Ri gi Cont ai ner Ri gi Programm ngQoj ect
Ref i nePr ogr amm ngQoj ect)

((Name String)
(filed obals seq(ldentifier))
(filelLocals seq(ldentifier))
(I ncludes set(File))))

A Case Study

Work with a 300KLOC legacy software system of highly
optimized code written in PL/IX

Components of this system need to be trandated to C++

Develop tools which semi-automate the translation process
to C++

Make sure that translated code performs as well as the
original code

Methodology

First migration effort was completed by hand; an expert
programmer required ~10weeks to migrate 7.8KLOC

Prototype migration tools were based on the heuristics used
by the expert

Migrated code was 50% slower than original; expert
Identified bottlenecks and hand-transformed migrated code
so that it performs much faster.

Expert heuristics were, again incorporated into the tool

PL/IXto C++

e The transformation process consists of three main steps:

— Transform PLI/IX declaration items and data types to
their corresponding C++ datatypes

— Generate support C++ libraries (macros for reference
components, class definitions for mgor data structures)

— Generate C++ source code that is structurally and
behavioraly similar to the legacy source code

Type Transformations

PL/IX to C++

dcl defineC_MAX _OPNDS2**11-1
11 bag based REFLECT ATTR, struct any L BAG{
union BAG {
2 bag bit(32), int bag;
2%, structany L BAG 2{
3 oper_count bit(16), short int oper_count;
max_opnds lit('2**11-1),
3 opcd bit(16), short int opcd,;
};
2%, structany L BAG 6
3ind bit(8), unsigned char ind;
3 X bit(24), Int X:24;
};

PL/IX to C++

dsinit: proc(pn); class Dsinit {
var_containing: proc; public:
....... static void dsinit(int pn);
end procedure var_containing; private:
static void var_containing();
overlap: proc(ml,m2) static void overlap(int m1, int m2);
-------- };

end procedure dsinit;

PL/IXto C++

dsmrgs proo(bb,always) returns(integer) exposed; || Nt Psmrgs:dsmrgs(int bb, boolean always)

dcl bb integer value, {_
aways bit value, Int bb;
@i, integer; boolean always,
int I 1;

| = make _empty_list;
if ns(bb) =0
then | = merge(1,l) ;

else

do | =fs(bb) to fs(bb)+ns(bb)-1;

| = merge(succ(i),l);
end;
return(l);
end procedure dsmrgs;

—

| = make_empty_list();
if ((C_NS(bb) ==0)) {
| = Dsmrgs.:merge(1, 1) ;
}
else{
for (i = C_FS(bb) ; i <= ((C_FS(bb) +
C NS(bb)) - 1); i++)
| = Dsmrgs.:merge(C_SUCC(i), I);
}

return|;

Overall System Performance

Subsystem Performance

Translator Performance

Human Effort

Conclusions

Semi-automatic transformation of large volume of codeis
feasible

Migrated code suffers no deterioration in performance
Incremental migration process feasible

Technique readily applicable to PL/xx family of languages
Technique reduces migration effort by afactor of 10

New prototype for C to RPG transformations targeting AS/400
users

