
1

Program Comprehension
and Software Migration

Strategies

Hausi A. Müller
University of Victoria

IWPC-2000
Limerick, Ireland, June 11, 2000

ICSE 2000 Roadmap 2

Outline

n Reengineering categories
n Comprehension strategies
n Migration strategies
n Language migration
n Program comprehension education
n Mt. St. Helens Theory
n Key research pointers
n Conclusions

ICSE 2000 Roadmap 3

Research Support

ICSE 2000 Roadmap 4

The Horseshoe Model
of Software Migration

Old system New system

Abstract system

ICSE 2000 Roadmap 5

Reengineering Categories

n Automatic restructuring
n Automatic transformation
n Semi-automatic transformation
n Design recovery and reimplementation
n Code reverse engineering and forward

engineering
n Data reverse engineering and schema

migration
n Migration of legacy systems to modern

platforms

ICSE 2000 Roadmap 6

The Horseshoe Model

Existing system New system

Abstract system

Semi-automatic

Automatic

Components Middleware

ICSE 2000 Roadmap 7

Reengineering
Categories...

n Automatic restructuring
• to obtain more readable source code
• enforce coding standards

n Automatic transformation
• to obtain better source code
• HTML’izing of source code
• simplify control flow (e.g., dead code, goto’s)
• refactoring and remodularizeing
• Y2K remediation

ICSE 2000 Roadmap 8

Reengineering
Categories...

n Semi-automatic transformation
• to obtain better engineered system (e.g.,

rearchitect code and data)
• semi-automatic construction of structural,

functional, and behavioral abstractions
• re-architecting or re-implementing the

subject system from these abstractions

ICSE 2000 Roadmap 9

Design Recovery
Levels of Abstractions

n Application
• Concepts, business rules, policies

n Function
• Logical and functional specifications,

non-functional requirements
n Structure

• Data and control flow, dependency graphs
• Structure and subsystem charts
• Architectures

n Implementation
• AST’s, symbol tables, source text

ICSE 2000 Roadmap 10

Synthesizing Concepts

n Build multiple hierarchical mental models
n Subsystems based on SE principles

• classes, modules, directories, cohesion,
data & control flows, slices

n Design and change patterns
n Business and technology models
n Function, system, and application architectures
n Common services and infrastructure

ICSE 2000 Roadmap 11

Modeling Mental Models
The Ubiquitous Graph

Model

Subsystem

Classification
Typed nodes and arcs

Generalization arcs

Subsystem

Aggregation arcs

Composite arc
Composite node

ICSE 2000 Roadmap 12

Program Comprehension
Technology

n Program understanding technology
• Cognitive models
• Levels of abstraction
• Synthesizing concepts
• Filtering information
• Slicing and dicing

n Comprehension environment
• Parsers and lightweight extractors
• Repository and conceptual modeling
• Visualization engines (graph and web based)

ICSE 2000 Roadmap 13

The Big-Bang
Comprehension Problem
n What can we do during evolution to

ease future understanding and
migration of information systems?

n We know the knowledge we need but
it is difficult to obtain from scratch

n “Big-bang” comprehension when the
system becomes “critical” is high-risk

n Analysis paralysis

ICSE 2000 Roadmap 14

The Understanding Gap

needed overall understanding

t

useful, known overall understanding

[Wong99]

t1 t2

ICSE 2000 Roadmap 15

Continuous Program
Comprehension

n Apply program understanding
continuously and incrementally during
evolution of the software system

n Use software reverse engineering to
re-document existing software

n Insert reverse engineering techniques
into development [Wong99]

n Symbiosis: models and code [Jackson00]

ICSE 2000 Roadmap 16

Evaluating Reverse
Engineering Tools

n The purpose of most reverse
engineering tools is to increase the
understanding an engineer has of the
subject system

n No agreed-upon definition or test of
understanding

n Several types of empirical studies that
are appropriate for studying the benefits
of reverse engineering tools

ICSE 2000 Roadmap 17

Program Understanding
Theses

An Emerging Discipline
n Domain retargetable reverse engineering

[Tilley95]
n Cognitive design elements for software

exploration tools [Storey98]
n Continuous understanding Reverse

Engineering Notebook [Wong99]
n Integrating static and dynamic reverse

engineering models [Systa2000]
n Architectural Component Detection for

Program Understanding [Koschke2000]

ICSE 2000 Roadmap 18

Outline

n Reengineering categories
n Comprehension strategies
n Migration strategies
n Language migration
n Program comprehension education
n Mt. St. Helens Theory
n Key research pointers
n Conclusions

ICSE 2000 Roadmap 19

Migration Theses

n Management of uncertainty and inconsistency
in database reengineering [Jahnke99]

n Integration and migration of information
systems to object-oriented platforms
[Koelsch99]

n Migrating C++ to Java [Agrawal99, Wen2000]
n An Environment for Migrating C to Java

[Martin2000]

ICSE 2000 Roadmap 20

Migration Objectives
Evolving Business Requirements

n Adapt to e-commerce platform
n Adapt to web technology
n Reduce time to market
n Support new business rules
n Allow customizable billing
n Adapt to evolving tax laws
n Reengineer business processes

ICSE 2000 Roadmap 21

Migration Objectives …
Software Evolution Requirements

n Higher productivity
n Lower maintenance costs
n Move to object-oriented platforms
n Inject component technology
n Adapt to modern data exchange

technology
n Leverage modern methods and tools

ICSE 2000 Roadmap 22

Migration Objectives …
Software Architecture Requirements

n Move to network-centric platforms
n Integrate cooperative information

systems
n Leverage centralized repositories
n Move from hierarchical to relational db
n Take advantage of web user interfaces
n Provide interoperability via buses and

gateways among applications
n Move to client-server architectures

ICSE 2000 Roadmap 23

Common Requirements
Migration

n Ensure continuous, safe, reliable, robust, ready access
to mission-critical functions and information
• Migrate in place

n Minimize migration risk
• Reduce migration complexity
• Make as few changes as possible in both code &

data
• Alter the legacy code to facilitate and ease migration
• Concentrate on the most important current and future

requirements

ICSE 2000 Roadmap 24

Common Migration
Requirements ...

n Minimize impact on
• users
• applications
• databases
• operation

n Maximize benefits of modern technology
• user interfaces, dbs, middleware, COTS
• automation, tools

ICSE 2000 Roadmap 25

Dimensions of Migration
Methods and Tools

Automation

Scale

Domain

automatic

manual

10K 10M
generic

specific

User involvement

ICSE 2000 Roadmap 26

Resistance to Change

n Are some systems more difficult to
change, evolve, reengineer than
others?

n Can we define a measure resistance
based on business value, existing
technology, new technology, evolution
pace?

n We need empirical studies ...

ICSE 2000 Roadmap 27

Separable Tiers

n Decompose legacy system into three
layers or application tiers
• Presentation (interfaces: user and APIs)
• Processing (application code, functions,

business rules, policies)
• Data services (database)

n Promotes interoperability, reuse,
flexibility, distribution, separate
evolution paths

ICSE 2000 Roadmap 28

Application Layers

Processing Objects Infrastructure

User Objects

Data Objects

ICSE 2000 Roadmap 29

Classification of LIS
Architectures

n Decomposable
• Separation of concerns
• Interfaces, applications, db services are

distinct components
• Functional decomposition
• Ideal for migration

There is nothing more difficult to arrange, more
doubtful of success, and more dangerous to
carry through than initiating changes.

—N. Machiavelli

ICSE 2000 Roadmap 30

Classification of IS
Architectures ...

n Semidecomposable
• Applications and db services are not

readily separable
• System is not easily decomposable

n Nondecomposable
• No functional components are separable
• Users directly interact with individual

modules
n [BS95]

ICSE 2000 Roadmap 31

Migration Strategies

n Ignore
• retire, phase out, let fail

n Replace with COTS applications
n Cold turkey

• rewrite from scratch
• high risk

n Integrate and access in place
• integrate future apps into legacy apps

without modifying legacy apps
• IS-GTP [Koelsch99]

ICSE 2000 Roadmap 32

Data Warehousing

n Data is needed for several distinct
purposes
• on-line transaction processing (access in

place)
• data analysis for decision support

applications (extraction of data into an
application specific repository)

n Creates duplicate data
n Popular approach

ICSE 2000 Roadmap 33

Gradual Migration or
“Chicken Little”

n Rearchitect and transition the
applications incrementally

n Replace LIS with target application
n Language migration
n Schema and data migration
n User interface migration
n GTE [BrSt95]

ICSE 2000 Roadmap 34

Chicken Little ...

n The intent is to phase out legacy
applications over time

n In place access is not economical in the
long run

n More effective, less risky than cold turkey
n Allows for independent user interface and

database evolution
n Incremental

ICSE 2000 Roadmap 35

Chicken Little ...

n Legacy and target applications must
coexist during migration

n A gateway to isolate the migration steps
so that the end users do not know if the
info needed is being retrieved from the
legacy or target system

n Development of gateways is difficult and
costly

ICSE 2000 Roadmap 36

Opportunistic Migration
Method

n Combination of forward and reverse
migration strategies

n Forward or reverse migration path per
• operation
• application
• interface
• database
• site
• user

n More complex gateways are needed

ICSE 2000 Roadmap 37

Migration Research
Method

n Perform a concrete case study with an
industrial software system

n Investigate methods and tools to
automate the process adopted in the
case study

n Conduct user experiments to improve
the effectiveness of the developed
methods and tools

n Investigate tool adoption problems

ICSE 2000 Roadmap 38

n Subject system is a 300 KLOC legacy
software system of highly optimized
code written in PL/IX

n Can the system incrementally be
translated to C++?
• Transliteration versus object-oriented design

n Develop tools which semi-automate the
translation process to C++

n The translated code must perform as well
as the original code

Language Migration—A
Case Study

ICSE 2000 Roadmap 39

n First migration and integration effort was
completed by hand by an expert [Uhl97]

n 10 person-weeks to migrate 7.8 KLOC
n Successfully passed all regression tests
n Built C++ and Fortran compilers with it
n It works …

… but migrated C++ code was 50%
slower than original PL/IX code

Manual Migration

ICSE 2000 Roadmap 40

n Expert identified performance bottlenecks
n Hand-optimized migrated code
n Optimized version performed better than

the original version [Martin98]
• Up to 20% better than the original code
• Now IBM was interested …

n Results
• Correct, efficient
• Translation, integration, optimization heuristics
• Incremental process

Performance Evaluation

ICSE 2000 Roadmap 41

n Can the translation, integration, and
optimization heuristics discovered by
experts be integrated into an
automated tool?

n How would it affect the performance?
n What existing tools could be leveraged

to build such a tool?
n Solution

• Use Software Refinery, Reasoning Systems

Automation

ICSE 2000 Roadmap 42

Transformation Process

n Transform PLI/IX artifacts to their
corresponding C++ artifacts

n Generate support C++ libraries
(macros for reference components;
class definitions for key data structures)

n Generate C++ source code that is
structurally and behaviorally similar to
the legacy source code

n CASCON98 Best Paper
[Kontogiannis98]

ICSE 2000 Roadmap 43

n Semi-automatic transformation of
large volume of code is feasible

n Migrated code suffers no deterioration
in performance

n Incremental migration process feasible
n Technique readily applicable to other

imperative languages
n Tool reduces migration effort by a factor

of 10 over manual migration
n CTAS—C++ to Java [Jackson2000]

Results, Morale &
Lessons Learned

ICSE 2000 Roadmap 44

Outline

n Reengineering categories
n Comprehension strategies
n Migration strategies
n Language migration
n Program comprehension education
n Mt. St. Helens Theory
n Key research pointers
n Conclusions

ICSE 2000 Roadmap 45

n How many teach 4th year or graduate
courses in software evolution, program
understanding, comprehension,
reverse engineering, reengineering?

n How many teach program
understanding or program reading in
1st year?

Teaching program
understanding

ICSE 2000 Roadmap 46

n Mary Shaw, Software Engineering
Education—A Roadmap; in The Future
of Software Engineering, ICSE 2000

n 1. Discriminate among different software
development roles

n 4. Integrate an engineering point of view
into CS and IS undergraduate curricula

n 6. Exploit our own technology in support
of education

Challenges and
Aspirations

ICSE 2000 Roadmap 47

n Available knowledge about software
exceeds what any one person can know

n Specializing roles
n Comprehension versus coding skills
n Developing the role of a reverse

engineer, program comprehender
n Software inspection expert

Discriminate among different
software development roles

ICSE 2000 Roadmap 48

n Study good examples of software
systems and develop program
understanding skills

n Teach back-of-the-envelope estimation
using reverse engineering technology

n Teach students how to investigate non-
functional requirements using program
comprehension technology

Integrate an engineering point of
view into undergraduate curricula

ICSE 2000 Roadmap 49

n Employ software exploration and
reverse engineering tools in 1st year

n Integrated environments such as
VA Java or J++ do not provide facilities
to explore and record mental models

n Familiarize students with software
exploration and conceptual modeling
tools

n Restructure curricula to teach both fresh
creation and evolutionary change

Exploit our own technology in
support of education

ICSE 2000 Roadmap 50

n May 18, 1980
Mt. St. Helens
self-destructed, setting off the biggest
landslide in recorded history and losing
400 meters of its crown

n Forests and meadows, and mountain
streams were transformed into an ash-
gray wasteland

n Ecologists dogma—nature recreates
ecosystems in a predictable fashion

Mt. St. Helens
Theory

ICSE 2000 Roadmap 51

n A decade later even
on the most sterile of
landscapes brave little vegetative
beachheads are formed

n The unpredictability of recolonization
and the pivotal importance of chance in
rebuilding of biological communities

n Wildflower gardens, which are mixes of
lupine, Indian paintbrush, pearly
everlasting, and fireweed, are emerging

A decade later

ICSE 2000 Roadmap 52

n Is program comprehension research
becoming too predictable?

n Do we need a cataclysmic event to
rejuvenate comprehension research?

n There are many vegetative beachheads
in the community

n But they tend to gravitate towards
established research and tools

n Particularly the tools arena needs new
beachheads

Encourage island-driven
research

ICSE 2000 Roadmap 53

Outline

n Reengineering categories
n Comprehension strategies
n Migration strategies
n Language migration
n Program comprehension education
n Mt. St. Helens Theory
n Key research pointers
n Conclusions

ICSE 2000 Roadmap 54

Key Research Pointers

n Investigate infrastructure, methods,
and tools for continuous program
understanding to support the entire
evolution of a software system from the
early design stages to the long-term
legacy stages
• Reverse engineering notebook

ICSE 2000 Roadmap 55

Key Research Pointers ...

n Instrument design architecture to ease
extraction of understanding architecture

n Store architecture artifacts in schema-
based repository and as unstructured or
Web-based text to ease searching

n Allow for incomplete semantics and
partial extraction of artifacts

ICSE 2000 Roadmap 56

Key Research Pointers ...

n Allow user to build virtual, multiple
architectures, perspectives, and views

n Provide tools to compare virtual and
code-centric architectures (e.g.,
reflection models [Murphy98])

n Make architecture extraction tools end-
user programmable and extensible

ICSE 2000 Roadmap 57

Key Research Pointers ...

n Develop methods and technology for
computer-aided data and database
reverse engineering
• Integrate code and data reverse

engineering methods and tools
• Leverage synergy between code and data

reverse engineering communities

ICSE 2000 Roadmap 58

Key Research Pointers ...

n Develop tools that provide better
support for human reasoning in an
incremental and evolutionary reverse
engineering process that can be
customized to different application
contexts
• End-user programmable tools
• Domain retargetable reverse engineering

ICSE 2000 Roadmap 59

Key Research Pointers …

n Concentrate on the tool adoption
problem by improving the usability and
end-user programmability of reverse
engineering tools to ease their
integration into actual development
processes
• Start with a web-based user interface
• Conduct user studies

ICSE 2000 Roadmap 60

Conclusions

n Mission statement
• Researchers in software design and formal

methods should concentrate on software
evolution rather than construction

• Program understanding and analysis experts
should teach their methods in 1st-year

n Plenty of research problems
n Wonderful case studies
n Exciting research!!!!

ICSE 2000 Roadmap 61

Invitation to Visit
Canada

May 12-19, 2001

