
Software Architecture in
Perspective

SENG 480/580
(H. Muller)

Today: Margaret-Anne Storey
(mstorey@uvic.ca)

The following slides for the course
introduction have been taken from a similar
course of Rick Kazman at CMU.

Recap from last lecture:

• Why is software architecture important?
• Business importance of software

architecture
• Factors influencing software architecture
• Different stakeholders

Low cost,
keeping people

employed, leveraging
existing corporate

assets!

Low cost, timely
delivery, not changed

very often!

Behavior,
performance,

security,
reliability!

Ohhhh...

Modifiability! Neat features,
short time to market,

low cost, parity with
competing products!

What’s Wrong with this
Diagram?

• Many things are left unspecified:
– What kind of components?
– What kind of connectors?
– What do the boxes and arrows mean?
– What is the significance of the layout?
– Why is control process on a higher level?

ØBox and arrow drawings alone are not
architectures; rather, they are a starting point.

What’s Wrong with the Diagram?

Which structure? Software is composed of many

structures.

• modules

• tasks

• functions

• hardware

• classes

Thus, when seeing boxes and lines, we must ask

• What do the boxes represent?

• What do the arrows mean?

What is Software Architecture?

The software architecture of a program or
computing system is the structure or
structures of the system, which comprise
software components, the externally visible
properties of those components, and the
relationships among them.

Implications of this Definition

Architecture is an abstraction of systems.
• Architecture defines components and how they

interact.
• Architecture suppresses purely local information;

private component details are not architectural.

Systems have many structures (views).
• No single view can be the architecture.
• The set of candidate views is not fixed or

prescribed: whatever is useful for analysis or
communication.

More Implications
Every system has an architecture.

• Every system is composed of components and
relationships among them.

• In the simplest case, a system is composed of a
single component, related only to itself.

Having an architecture is different from having
an architecture that is known. Issues:
• precise specification of the architecture
• architecture recovery and conformance
• rationale for the architecture

Why Is Architecture Important?

Architecture is important for (at least)
three reasons:
• It provides a vehicle for communication

among stakeholders.
• It is the manifestation of the earliest design

decisions about a system.
• It is a transferable, reusable abstraction of

a system.

Communication Vehicle

Architecture provides a common frame of
reference in which competing interests may
be exposed and negotiated.
• negotiating requirements with users
• keeping the customer informed of progress and

cost
• implementing management decisions and

allocations

Result of Early Design
Decisions -1

An architecture constrains an
implementation.
• implementations must conform to

architecture
• (global) resource allocation decisions

constrain implementations of individual
components

• system tradeoffs are manifested in the
architecture

Result of Early Design
Decisions -2

The architecture dictates organizational structure
for development/maintenance efforts, e.g.
• division into teams
• units for budgeting, planning
• basis of work breakdown structure
• organization for documentation
• organization for CM libraries
• basis of integration, test plans, testing
• basis of maintenance

Ø Once committed to, an architecture is extremely hard to
change!

Result of Early Design
Decisions -3.

Architecture permits/precludes the achievement of
a system’s desired quality attributes (modifiability,
performance, security, etc.).

The architecture influences qualities, but does not
guarantee them.

An architecture helps with evolutionary prototyping.
• Architecture serves as a skeletal framework into

which components can be plugged.
• By segregating functionality into appropriate

components, experimentation is easier.

Reusable Model

An architecture forms a reusable model. It:
• provides a vocabulary of design
• enables template-based component development
• enables product lines
• enables systems to be built from externally

developed components
• separates functionality from packaging and

interconnection mechanisms

Architectural Structures - 1

In a house, there are plans for rooms, electrical
wiring, plumbing, ventilation, . . .

Each of these constitutes a “view” of the house.
These views are

• used by different people
• used to achieve different qualities in the house
• used as a description and prescription

So it is with software architecture.

Functional View

Components:
• functions, key system abstractions, domain

elements
Connectors:

• dependencies, data flow

Users:
• domain engineers, product-line designers, end

users

Reasoning:
• functionality, modifiability, product lines/reusability,

tool support, work allocation

Code View

Components:
• classes, objects, procedures, functions
• subsystems, layers, modules

Connectors:
• calls, invokes
• is-a-sub-module-of

Users:
• programmers, designers, reusers

Reasoning:
• modifiability/maintainability, portability, subsetability

Development View

Components:
• files, directories

Connectors:
• contains

Users:
• managers, programmers, configuration managers

Reasoning:
• modifiability/maintainability
• testing
• configuration management/version control

Concurrency View
Components:

• processes, threads

Connectors:

• synchronization, data flow, events

Users:

• performance engineers, integrators, testers

Reasoning:

• performance, availability

Physical View

Components:
• CPUs, sensors, storage

Connectors:
• networks, communication devices

Users:
• hardware engineers, system engineers

Reasoning:
• system delivery and installation, performance,

availability, scalability, security

Scenarios

What are scenarios?
• use cases: sequences of responsibilities
• change cases: changes to the system

Why use scenarios?
• to understand and validate the design
• to communicate the design
• to tie the views together
• to animate the design
• to understand the limits of the design

What Are Views Used For?

Each view provides an engineering handle on
certain quality attributes.

Views are an engineering tool to help achieve
desired system qualities.

In some systems, distinct views collapse into
one. (E.g., the concurrency and physical
views may be the same for small systems.)

What Are Views Used For?

Documentation vehicle for
• current development and future

development
• managers and customers

Thus, views must be annotated to support
analysis. Scenarios aid in annotating
views with design rationale.

Hierarchical Views
Every view is potentially hierarchical, e.g.:

• functional: functions contain sub-functions
• development: directories contain files
• code: modules contain sub-modules; systems

contain sub-systems
• concurrency: processes contain threads
• physical: clusters contain computers contain

processors

Because views are complex and hierarchical,
they need to be navigable.

View Navigability - 1
A skilled software engineer with some domain
knowledge should be able to read the
documentation and navigate through it.

There should be an obvious starting point,
portraying the system as a collection of
interconnected subsystems.

Subsystems should be named, with their
responsibilities, functionality, and
interconnections identified.

View Navigability - 2.

Pointers should direct the reader to more
detailed documentation of sub-structures.

Tool support can and should aid in navigation.

At every stage, the nature of the connections
among the parts should be clearly identified.

Lecture Summary
Software architecture is about components, connectors,
annotations and views. It exists to support analysis and
hence decision making.

Software architecture the key to a cycle of influences
called the Architecture Business Cycle.

Architectural views are related to each other in
complicated ways.

Lesson: Choose the views that are useful to the system
being built and to the achievement of qualities that are
important to you.

