Software Architecture in
Perspective

SENG 480/580
(H. Muller)

Today: M argaret-Anne Storey
(mstorey@uvic.ca)

The following dlides for the course
Introduction have been taken from asmilar
course of Rick Kazman at CMU.

Recap from last lecture;

Why is software architecture important?

Business importance of software
architecture

Factors influencing software architecture
Different stakeholders

Stakeholders of a System
D17 ©® 71 6 &

Development _
Marketing End user Maintenance

organization's nar
stakeholder stakeholder organization

n;?anki ?:-T:!EET stakeholder

&

Customer
stakeholder

OW COSTt; !
keeping people™N
employed, leveraging
existing corporate
assets!

9
ow cost, parity wit
ompeting products

performance,
security,
reliability!

Modifiability! Neat features
short time to market,

Other Stakeholders

Development organization
Marketers

Maintenance/Reuse organization

Development Organization
Concerns

Immediate business issues
« amortizing the infrastructure
* keeping cost of installation low
- utilizing personnel
Long-term business issues
* investing in an infrastructure for strategic goals
* investing in personnel
Organizational structure issues

 furthering vested interests, e.g.,
- maintaining an existing database organization

- supporting specialized expertise
* maintaining the standard method of doing
business

Technical Environment

Current trends: today’s information system will
likely employ a
- database management system
* Web browser for delivery and distribution across
platforms
This was not true 10 years ago.

Available technology: decisions on using a
centralized or decentralized system depend on

processor cost and communication speed; both are
changing quantities.

Architect’s Background

Architects develop their mindset from their past
experiences.
* Prior good experiences will lead to replication of
prior designs.
* Prior bad experiences will be avoided in the new
design.

Summary: Influences on the
Architect

Architect’'s influences

Stakeholders

Development
organization

Technical
environment

]—)Req uirements

O

Architect(s)

—» Architecture |

!

System

Factors Influenced by
Architectures

Structure of the development organization
Enterprise goals of the development organization
Customer requirements

Architect’s experience

Technical environment

The architecture itself

Architecture Influences the
Developing Organization’s Structure

Short term: Work units are organized around
architectural units for a particular system under
construction.

Long term: When company constructs collection of
similar systems, organizational units reflect
common components (e.g., operating system unit
or database unit).

Architecture Influences the Developing
Organization’s Enterprise Goals

Development of a system may establish a foothold
in the market niche.

Being known for developing particular kinds of
systems becomes a marketing device.

Architecture becomes a leveraging point for
additional market opportunities and networking.

Architecture Influences Customer
Requirements

Knowledge of similar fielded systems leads
customers to ask for particular features.

Customers will alter their requirements on the basis
of the availability of existing systems.

Architecture Influences the Architect’s
Experience and T'echnical Environment

Creation of a system affects the architect’s
background.

Occasionally, a system or an architecture will affect
the technical environment.

» the WWW for information systems

* the three-tier architecture for database systems

A Cycle of Influences

Architectures and organizations influence each
other.
* Influences to and from architectures form a cycle.
» An organization can manage this cycle to its
advantage.

Architecture Business Cycle
(ABC)

Architect’s influences
Stakeholders—j O
—» Requirements
Development— -2 Amh'tect(s)% Architecturg |
organization i
Technical
: System
environment

What Makes a Good Architect? -1

People skills: must be able to
* negotiate competing interests of multiple
stakeholders
« promote inter-team collaboration

Technical skills: must
» understand the relationships between qualities
and structures
» possess a current understanding of technology
« understand that most requirements for an
architecture are not written down in any
requirements document

What Makes a Good Architect? -2

Communication skills: must be able to
- clearly convey the architecture to teams (both
verbally and in writing)
* listen to and understand multiple viewpoints

What Makes a Good Architecture?

Fitness for purpose
Achievable within a reasonable budget

Achievable within a reasonable time

So,

... what is software architecture?

A Software Architecture (?)

Control

process
(CP)

Reverb
model

(MODR)

Frop loss
model

(MODP)

What' s Wrong with this
Diagram?

 Many things are left unspecified:
— What kind of components?
— What kind of connectors?
— What do the boxes and arrows mean?
— What is the significance of the layout?
— Why is control process on a higher level?

» Box and arrow drawings alone are not
architectures; rather, they are a starting point.

What’s Wrong with the Diagram?
Which structure? Software is composed of many
structures.
e modules
e tasks
e functions
e hardware
e classes
Thus, when seeing boxes and lines, we must ask
* What do the boxes represent?

 What do the arrows mean?

What 1s Software Architecture?

The software architecture of a program or
computing system is the structure or
structures of the system, which comprise
software components, the externally visible
properties of those components, and the
relationships among them.

lmplications of this Definition

Architecture Is an abstraction of systems.

» Architecture defines components and how they
Interact.

» Architecture suppresses purely local information;
private component details are not architectural.

Systems have many structures (views).
* No single view can be the architecture.

e The set of candidate views is not fixed or
prescribed: whatever is useful for analysis or
communication.

More Implications

Every system has an architecture.

e Every system is composed of components and
relationships among them.

* In the simplest case, a system is composed of a
single component, related only to itself.

Having an architecture is different from having
an architecture that is known. Issues:
* precise specification of the architecture
e architecture recovery and conformance
e rationale for the architecture

Why Is Architecture Important?

Architecture Is important for (at least)
three reasons:

e |t provides a vehicle for communication
among stakeholders.

e |t Is the manifestation of the earliest design
decisions about a system.

e |t IS a transferable, reusable abstraction of
a system.

Communication Vehicle

Architecture provides a common frame of
reference in which competing interests may
be exposed and negotiated.

e negotiating requirements with users

» keeping the customer informed of progress and
cost

« implementing management decisions and
allocations

Result of Early Design
Decisions -1

An architecture constrains an
Implementation.

* Implementations must conform to
architecture

* (global) resource allocation decisions
constrain implementations of individual
components

e system tradeoffs are manifested in the
architecture

Result of Early Design
Decisions -2

The architecture dictates organizational structure

for development/maintenance efforts, e.g.
e division into teams
e units for budgeting, planning
* basis of work breakdown structure
e organization for documentation
e organization for CM libraries
* basis of integration, test plans, testing
* basis of maintenance

» Once committed to, an architecture is extremely hard to
change!

Result of Early Design
Decisions -3.

Architecture permits/precludes the achievement of

a system'’s desired quality attributes (modifiability,
performance, security, etc.).

The architecture influences qualities, but does not
guarantee them.

An architecture helps with evolutionary prototyping.

« Architecture serves as a skeletal framework into
which components can be plugged.

e By segregating functionality into appropriate
components, experimentation Is easier.

Reusable M odél

An architecture forms a reusable model. It:

 provides a vocabulary of design
» enables template-based component development
e enables product lines

e enables systems to be built from externally
developed components

 separates functionality from packaging and
Interconnection mechanisms

Architectural Structures- 1

In a house, there are plans for rooms, electrical
wiring, plumbing, ventilation, . . .

Each of these constitutes a “view” of the house.

These views are
 used by different people
 used to achieve different qualities in the house
» used as a description and prescription

So it I1s with software architecture.

Architectural Structures - 2.

Functional

¥

Concurrency

B

Develop-

ment #—» Code

¥

Physical

—» Similar to Kruchten’'s 4+1 View Model

Functional View

Components:

o functions, key system abstractions, domain
elements

Connectors:
« dependencies, data flow

Users:

« domain engineers, product-line designers, end
users

Reasoning:

o functionality, modifiability, product lines/reusability,
tool support, work allocation

Functional View Example

Virtual Toolkit Virtual Application
Application

Code View

Components:
» classes, objects, procedures, functions
e subsystems, layers, modules

Connectors:
e calls, invokes
e |S-a-sub-module-of
Users:
e programmers, designers, reusers
Reasoning:
« modifiability/maintainability, portability, subsetability

Code View Example

|I.-'l-"inuﬁ::rw}=.';'5|

CreateScroliBar()

CreateWindow()

Fat

MotifWindowkit

OpenLookWindowKit

CreateScrollBar{)
CreateWindow()

CreateScrollBar{)p—F
CreateWindow])

return
new OpenLoockWindow

return
new MotifWindow

Development View

Components:
e files, directories

Connectors:

e contains
Users:

e managers, programmers, configuration managers
Reasoning:

« modifiability/maintainability

e testing

 configuration management/version control

Concurrency View

Components:

* processes, threads
Connectors:
« synchronization, data flow, events
Users:
» performance engineers, integrators, testers

Reasoning:

« performance, availability

Concurrency View Example

Client

Server

:'nl'ul'l'i'||'|i'|l'|l"|"||'|"|l'|l"||'|I"||I'||"l'ul'ul'i'il'i'nl'i'ﬂﬂdﬂﬁ##ﬂdﬂfﬂﬂﬂ#dﬂ###ﬂdﬂfﬂﬂ#ﬂdﬂr’
z Operational unit z
[-
- - —— —— 2
g Standby Standb z
: SAS F Jtand PAS | data mgf SAS | £
s L — —1
2 2

dFdd dF AP AP AP AP AF A AT A A AR AP A A AR AP AP AP AP AT A A A A A AP AP AR

redquest
response

T ' T T T T T T T T T T T T T T T T T T T N

Operational unit

i SAS SAS

AL
3
%
Y
3
Y
\i R

AT RLE LR R
"ThhE TR T L L LR

SR A A R T ST T AT SRR SR SR R R RS ST T ST T SRR A SR A G SRS ST T T AT SRR A R A R R

Physical View

Components:
 CPUs, sensors, storage

Connectors:

e networks, communication devices
Users:

e hardware engineers, system engineers
Reasoning:

» system delivery and installation, performance,
availability, scalability, security

Phy51cal View Example

LCM Backbane Ring and Bridges to Access Rings

Hast
Int-ar‘f-al:u

(TR

| LR 100 AT
ot

B IR I AN
i

1

e |
i
i1--
i

lll"l II:iII'i!I:jI!;J

1 LIU-Hs

LIU-Hs

Duial) .

Dual ESl=

ESIF

Mudtiphe

Comimon
Consala

Aceess Rings

S OIRrIO

Consdles
{up 1o

- 210)

fone ped
ESl)

. 1 1 1 | | 1 1 1 1 |
Taiskani 3 LIU-C8
Fo3-t P ==~
Training i
Siibs- Carbral
3 LIU-Cs
3 LIU-Cs
BRI R
3 LIU-Cs
| Dual | Dhusal
BCH LCH
MEC MiEC ™
Canscles [Consoles

Scenarios

What are scenarios?

e Use cases: sequences of responsibilities
e change cases: changes to the system

Why use scenarios?
* to understand and validate the design
e t0 communicate the design
e to tie the views together
 to animate the design
* to understand the limits of the design

What Are Views Used For?

Each view provides an engineering handle on
certain quality attributes.

Views are an engineering tool to help achieve
desired system qualities.

In some systems, distinct views collapse into
one. (E.g., the concurrency and physical
views may be the same for small systems.)

What Are Views Used For?

Documentation vehicle for

 current development and future
development

* Managers and customers

Thus, views must be annotated to support
analysis. Scenarios aid in annotating
views with design rationale.

Hierarchical Views

Every view Is potentially hierarchical, e.g.:
o functional: functions contain sub-functions
« development: directories contain files

e code: modules contain sub-modules; systems
contain sub-systems

e concurrency: processes contain threads

 physical: clusters contain computers contain
Processors

Because views are complex and hierarchical,
they need to be navigable.

View Navigability - 1

A skilled software engineer with some domain
knowledge should be able to read the
documentation and navigate through It.

There should be an obvious starting point,
portraying the system as a collection of
Interconnected subsystems.

Subsystems should be named, with their
responsibilities, functionality, and
Interconnections identified.

View Navigability - 2.

Pointers should direct the reader to more
detailed documentation of sub-structures.

Tool support can and should aid in navigation.

At every stage, the nature of the connections
among the parts should be clearly identified.

L ecture Summary

Software architecture is about components, connectors,
annotations and views. It exists to support analysis and
hence decision making.

Software architecture the key to a cycle of influences
called the Architecture Business Cycle.

Architectural views are related to each other In
complicated ways.

Lesson: Choose the views that are useful to the system
being built and to the achievement of qualities that are
Important to you.

