o) The following slides for the course
Topics in Software Architecture introduction have been taken from a similar
course of Rick Kazman at CMU.

SENG 480/580
(H. Muller)
Today: Jens Jahnke (jens@acm.org)

Typical Descriptions of

Building Systems from Parts Software Architectures

* The hype:

“... and then we’ll be able to construct software systems by

I
I
T . . . The Archiecture of Thi System « Descriptions of software systems
cking out parts and pl ng them together, just like . . %
%nkler%oyl; par plugging 8 T Just iy I often include a section on “the
I
I

architecture of this system”
« These are usually informal prose

« The hard cold truth: plus box-and-line diagram
It’s more like having a bathtub full of Tinkertoy, Lego, Erector —{] « Sometimes these appeal to intuition
set, Lincoln logs, Block City, and six other incompatible Kkits -- Y « They have little precision, are rarely
picking out parts that fit specific functions and expecting them L OJ formal, and rarely analyz;lble
—— ’
to fit together — « So what good are they???

\Software Architectures \Software Architectures

|

Typical Descriptions of

Software Architectures Course Objectives
> "Camelot is based on the client-server model and uses remote * Learn ltl(.)tdetSIgI;,lundlerSfta}l;ldt, antc.l evaluate systems at
procedure calls both locally and remotely to provide an architectural level ol abstraction.
communication among applications and servers." [Spector 87] * By the end of the course, be able to:
> "We have chosen a {iisll;ibu?ed, object-oriented approach to > Recognize major architectural styles in existing systems.
managing information." [Linton 87] > Describe and present an architecture clearly.
> "The easiest way to make the canonical sequential compiler

> Design architectural alternatives for a problem and choose

into a concurrent compiler is to pipeline the execution of the among them.

compiler phases over a number of processors." [Seshadri 88] . .)
"The ARC network [follows] the general network architecture > Construct a medium-sized software system that satisfies an

specified by the ISO in the Open Systems Interconnection ?i?:leilto%[rlrllgﬂtsgj E(e)(iisfigaé;or; dﬁgﬁ:ﬂiﬁiﬂg definitions and
Reference Model." [Paulk 85] P! P! .

> Analyze software architectures for appropriateness.

> Use domain knowledge to specialize an architecture for a
particular family of applications.

v

s |Software Architectures \Software Architectures
4

?

Software Design Levels

Software Design Levels: Programs

s \Software Architectures
6

Library Reuse

‘ Software Architectures

Software Design Levels: Architecture

Elements of a Complete
Software System

ey

d0b868bdsdoose 5

Architectural Patterns

s Software Architectures
8

User view of problem [User Model ﬂ
Software view of problem Requirement ﬂ
Modules and connections [Architecture

Algorithms & data strs Code]I
Data layouts, memory maps [Executable }I

‘ Softw rchitectures
9

Observations about Designers

* They freely use informal patterns (idioms)

> Very informal, imprecise semantics

> Diagrams as well as prose, but no uniform rules

> Communication takes place anyhow
* Their vocabulary uses system-level abstractions

> Overall organization (styles)

> Kinds of components and interactions/interfaces among them
» They compose systems from subsystems

> Tend to think about system structure statically

> Often select a system organization by default, not by design

Software Architectures

|

Software Architecture

* The architecture of a software system
> defines the system in terms of components and interactions
among components
> shows correspondence between requirements and elements of
the constructed system
> addresses system-level properties such as latency, capacity,
throughput, security, availability
* An architectural definition selects
> Components: define the locus of computation
» Examples: filters, databases, objects, ADTs
> Connectors: mediate interactions of components
» Examples: procedure call, pipes, event broadcast
> Properties: specify info for construction & analysis
» Examples: signatures, pre/post conditions, RT specs

‘ \Software Architectures
1

Aren’t Programming Languages Good Enough?

When orders-of-magnitude improvement are
required, new technology may be necessary J

m d
s \Software Architectures
12

Architectural Design Task

Different issues for architecture & programs

Architecture Programs
interactions among parts
structural properties

implementations of parts
computational properties

declarative operational

mostly static mostly dynamic
system-level performance algorithmic performance
outside module boundary Inside module boundary

‘ \Software Architectures

Analogy to Building Architecture

Architectural styles: Colonial, Victorian, Greek Revival
Software system organization paradigms: pipes, layers, events

Building codes: electrical, structural, etc
Formal specifications: functionality, capacity
Standards (code, documentation, interfaces, etc.)

Special expertise for given style: balloon frames, slate roofs
Domain-specific architectures
Attribute-based architectural styles

s Software Architectures
1

Major Topics

—

. Introduction to Software Architecture
Understanding the Problem Space
Problem frames and types
Applications to complex systems
Classical Architectural Styles
Dataflow systems
Procedure call systems
Event-based systems
Repository-oriented systems
Independent processes
Others (client-server systems, component-based architectures.)
. Techniques/Tools
Architecture documentation
Architecture design and analysis
Design assistance, patterns, taxonomies
Notations and tools

L

Ll

'S

Software Architectures

|

Questions

* What is a software architecture? How is it best
represented?

* What kinds of issues does software architecture
address?

* Why is this a worthwhile field of study?
* How does architectural design and analysis relate to
other software development activities?

* How is software architecture different than
programming?

s Software Architectures
18

2. Understanding the Problem Space

* Understand that
> there are different kinds of problems

> different kinds of problems require different kinds of
solutions

* Problem Types and Problem Frames

> The idea of a problem type/frame

> Classical problem frames

> The need to combine multiple frames to solve real problems
« Case study

> London Ambulance example to illustrate these ideas

\Software Architectures

|

Questions

« What kinds of problems are there? How do we
generalize these?

* How can one identify the important parts of a problem
frame?

* How can one recognize when a problem frame is a
good/bad fit?

* When a problem frame is a bad fit, what do you do?

* How do we deal with a situation in which multiple
problem frames may apply to at the same time?

s \Software Architectures
2

3. Classical Architectural Styles

» Common architectural idioms, taxonomies, and
patterns
* Issues:
> Detailed look at specific architectural styles
> Pure forms first; later heterogeneous systems
> Distinguishing characteristics & specializations
> Heuristics for choosing a style
> Implementation techniques
> Formal models and analysis
> Case studies

\ \Software Architectures
2

Questions

* What are the common architectural styles used by
experienced system builders?

* What does it mean to be a style and what properties
does each style have?

» What kinds of applications are best matched with
certain architectural styles?

« Can one implement one architectural style by another?

* How can one precisely characterize an architectural
style?

* What kinds of analyses are made easier when you
know the style?

‘ |Software Architectures
2

Subtopics

* Dataflow Systems

> batch sequential, pipe & filter
¢ Procedure Call Systems

> information hiding, ADTs, objects
« Event-based Systems

> multi-cast organization, implicit invocation
* Repository-oriented Systems

> blackboards, databases, client-server
* Processes

> communicating processes, message passing
* Others

> client-server systems, component-based architectures

Software Architectures

|

4. Techniques

« Supporting the architectural design task

« Issues:
> Notations for representing architectural designs
> Techniques for choosing a good architecture
> Techniques for analyzing these representations

> Tools for representing architectures, carrying out these
analyses, and for guiding choice of architectural style

> Making an effective architectural presentation
> Incorporating architecture into other development activities
> Coping with heterogeneity and mismatched parts

‘ Software Architectures
2

Subtopics

* Design assistance
> Concepts for choosing architectural design
> Classification of architectural constructs
> Patterns
> Selection and evaluation of architectures
* Notations and tools
> Architectural description languages and tool support
> Architectural specification
> Effective architectural representation and presentation
+ Coping with legacy, evolution, business aspects
> Reverse engineering
> Architecture analysis
> Product Lines

| Software Architectures

|

Questions

* How can one connect components that were not
designed to work together?

* How can one define an architectural product line?

« Is it possible to analyze an architectural description
and predict the properties of the resulting system?

* How can we exploit the wisdom of virtuosos to help
less-skilled engineers?

* What are the elements of an effective architectural
pitch?

* What role do architectural design reviews play?

‘ Software Architectures
%

Course Outline and Organization

The Final Word

Software architecture is like teenage sex:

« It is on everyone’s mind all the time.
* Everyone talks about it all the time.
« Everyone thinks everyone else is doing it.
« Almost no one is really doing it.
* The few who are doing it are:
> Doing it poorly.
> Sure it will be better next time.
> Not practicing it safely.

Software Architectures

|

