
A BASis (or ABASs) for Reasoning About Software Architectures

Mark Klein, Rick Kazman, Robert Nord
Software Engineering Institute, Carnegie Mellon University

Pittsburgh, PA, U.S.A. 15213

+1-412-268-7615
{mk, kazman, rn}@sei.cmu.edu
ABSTRACT
This paper discusses the use of Attribute-Based Architec-
tural Styles (ABASs)—architectural styles accompanied by
explicit analysis reasoning frameworks—in design. The
paper has two main objectives: to convince readers that
ABASs provide a basis for insightful reasoning about a soft-
ware architecture’s ability to meet its quality attribute goals;
and to demonstrate the utility of ABASs by showing an
example of how ABASs are used to design an industrial sys-
tem architecture entirely via ABASs. In the process of
designing this architecture, we show excerpts from our
growing ABAS handbook and argue for why ABASs help us
in designing architectures efficiently and predictably.

Keywords
Architecture analysis and design, quality attribute models,
architectural styles

1 ATTRIBUTE-BASED ARCHITECTURAL STYLES

Architectural Styles
An architectural style (as defined by Shaw and Garlan [10]
and elaborated on by others [1]), is a description of compo-
nents, connectors, topology, and some constraints on their
interaction. Architectural styles also provide an informal
description of their strengths and weaknesses. Architectural
styles are important engineering artifacts because they define
classes of designs along with their associated known proper-
ties. They offer experience-based evidence and qualitative
reasoning about how each design class is used. “Use the pipe
and filter style when reuse is desired and performance is not
a top priority” is an example description that is found in def-
initions of this style.

What are ABASs?
In [7] and [8] we introduced the notion of an Attribute-Based
Architectural Style (ABAS) to offer a foundation for more
precise and efficient reasoning about architectural design.
We accomplish this goal by explicitly associating a reason-
ing framework (qualitative or quantitative) with an architec-
tural style, which shows how to reason about the design
decisions comprising the style. These reasoning frameworks

are based on quality attribute-specific models, which exist in
the various quality attribute communities (such as the perfor-
mance, modifiability, and reliability communities).

ABASs are powerful because they provide a reuser with the
concentrated wisdom of many preceding designers faced
with similar problems. Using ABASs will allow an architect
to employ the collected knowledge of the architecture design
community and the various quality attribute communities in
much the same way that object-oriented design patterns have
given novice designers access to a vast array of experience
collected in the object-oriented design community [2].

ABASs are an important step in bringing predictability—the
hallmark of a mature engineering discipline—to architecture
design. ABASs promote a disciplined way of doing design
and analysis of software architecture based on reusing
known patterns of software components with predictable
properties. We will emphasize this point throughout this
paper and exemplify it in a concrete design example.

ABASs are not only attribute-based but, unlike existing
architectural styles, are also attribute specific. This is a form
of separation of concerns. When we design or analyze using
ABASs we consider a single quality attribute at a time,
because each ABAS is associated with only one attribute
reasoning framework. However, in many situations, separa-
tion of concerns inevitably leads to a subsequent need for
composition of concerns. Later in the paper we address this,
showing how to design an architecture by combining several
ABASs.

The Sections of an ABAS
An ABAS description consists of 4 major sections:

1. Problem description - informally describes the design and
analysis problem that the ABAS is intended to solve, includ-
ing the quality attribute of interest, the context of use, con-
straints, and relevant attribute-specific requirements.

2. Stimulus/Response attribute measures - a characterization
of the stimuli to which the ABAS is to respond and the qual-
ity attribute measures of the response.

3. Architectural style - a description of the architectural style
in terms of its components, connectors, properties of the
components and connectors, patterns of data and control
interactions (topology), and any constraints on the style.

4. Analysis - a description of how the quality attribute mod-
els are formally related to the architectural style, along with

heuristics of how to reason about the style.

Our experience has shown that ABASs provide a number of
benefits to engineers designing and analyzing complex archi-
tectures [6]. They provide:

• a way of reasoning about the architectural style with
respect to a quality attribute such as modifiability, usabil-
ity, availability, performance, etc.

• a package consisting of an architectural style along with
an analytic model and a checklist of attribute-specific
questions

• an analytic characterization that concisely tells you
whether this style is appropriate for the problem that you
face (in much the same way that algorithms are charac-
terized as O(n2) or O(log n))

• a way of dividing and conquering an architectural design
or analysis problem

In this paper we will report on a series of small experiments
that offer evidence of these benefits.

Approach
One step on the path of putting ABASs to practical use is to
compare a design generated completely from ABASs to a
design generated in practice. To prove the utility of ABASs
in design we would need to run a controlled experiment
where we designed a system two ways, one with and one
without ABASs. This is exceedingly difficult to do and to
control in practice. What we did instead as an intermediate
step is to “re-design” an existing system primarily from the
requirements. We also had access to some limited design
documentation, but we relied upon the requirements and
ABASs to generate our own design and compared it to the
existing design at several intermediate stages. Our goal was
to understand how ABASs can be used to guide the design
and to illuminate critical design decisions and tradeoffs.

2 CASE STUDY
The goal of this section and the next is to demonstrate how
ABASs guide and clarify architectural reasoning. In this sec-
tion we will describe the requirements for a health care
patient monitoring system.1 In the next section we will show
how to use ABASs to construct an architectural design which
addresses those requirements. We will then use this “ideal”
design to give us insight into the actual design.

This system is an embedded, real-time monitoring system,
discussed in [4]. It is a stand-alone bedside unit that obtains
and displays a patient’s vital signs, or sends them to a central
unit for display. The bedside unit can be transported along
with a patient, so physical size and cost limitations impose
severe hardware constraints. The system has different con-
figurations to produce a set of medium to high-end patient
monitors.

The primary function of the system is to acquire data and
make it available to the user for viewing. This functionality

can be seen in the scenario depicted in Figure 1.

The scenario shows how raw data is acquired, processed, and
displayed on the screen. Data flow between entities is indi-
cated by arrows labelled with the type of data. The wave-
form (wvf) data is first acquired. The acquired data is both
displayed on the screen and processed to produce key param-
eter (param) values. These values are further processed to
produce visual and audio feedback as well as alarm informa-
tion for the clients, and are displayed on the screen.

In addition to these functional requirements, the architecture
was influenced by the need of the monitoring system to han-
dle a flexible and growing set of requirements, to run on dif-
ferent hardware and software platforms, and to meet real-
time performance requirements. These are as follows.

Modifiability requirements: adding/modifying producers and
consumers of information including, but not limited to:
changes to smoothing/filtering algorithms, alarm sensing
logic, and trend tracking; new data formats; different dis-
plays; relocation of application entities to other processors.

Portability requirements: the system must be able to run on
multiple hardware platforms; use different types of devices
(displays and sensors); run on different operating systems;
and accommodate different graphics primitives.

Real-time performance requirements: Raw data is sensed
every 10 ms. and must be displayed on display device 1
within 20 ms. of being acquired. Many different types of
waveform calculations are performed. Some are performed
once every 100 ms. and other are performed once every 300
ms. The 300 ms calculations are performed using reused leg-
acy software assets. The results of the 300 ms. calculations
must be displayed on the patient monitor as a waveform with
an associated beep within 50 ms. of completing the calcula-
tion. Certain detectable conditions should cause an alarm to
be triggered. The alarm should manifest on the patient moni-
tor within 500 ms. of completing the waveform calculation.
The results of the 100 ms. calculation should be sent (but not
necessarily received) to a remote site within 20 ms. of the
completion of the calculation.

3 APPLYING ABASs
We will now show how we chose and used ABASs to create
an initial design for the patient monitoring system. In each
case we started with a portion of the functional and quality
requirements, used these to index into our handbook2 of
ABASs for one that addresses some portion of the require-

1. Although this is a real system, many of its details
have been modified to protect the company’s propri-
etary interests.

2. The handbook is continually growing, but an ear-
ly version of it can be found at [8].

Figure 1: Producer Consumer Processing Scenario

acquire analyze display
process
alarms

wvf param alarm

wvf

ments, and instantiated that ABAS to meet the needs of this
system. We will discuss combining the ABASs and making
tradeoffs among them in Section 4.

Addressing Portability: The Layering ABAS
As stated above, the system’s requirements state that it must
be able to run on multiple hardware platforms; use different
types of devices (displays and sensors), run on different
operating systems; accommodate changes in the underlying
graphics primitives.

From our handbook we determine that the Layering ABAS
has role in satisfying each of these requirements. Extract 1
shows a portion of the Layering ABAS. This extract illus-
trates a portion of the reasoning that a user of the ABAS
handbook would go through in choosing this ABAS:

The ABAS3 tells us that layering is a technique that isolates
some parts of the system from others. In the case of the
patient monitoring system it will hide implementation spe-
cifics that underlie key interfaces to devices, communication
protocols, the operating system, and graphics primitives.

The patient monitoring application satisfies many of the cri-
teria listed in Extract 1. Application entities need an inter-
face to graphics, to various devices and to a communication

service which provides location and name independence.
Each of these collections of services is highly coherent. Each
collection of services uses lower level primitives and/or the
operating system in a predictable manner. Dependency is
unidirectional. The ABAS would lead us to consider a layer-
ing style as shown in Figure 2. We have not shown the data
and control connections in this figure, but we begin with the
ideal assumption that each layer accesses only its adjacent
lower layer.

Layering is not a new topological concept. A benefit of the
Layering ABAS is not that it introduces layering, but rather
that it offers a succinct characterization of the criteria under
which a layering style might apply. But an even more signifi-
cant benefit provided by an ABAS is the association of qual-
ity attribute-based reasoning with the topological
architectural style. Extract 2 illustrates the reasoning associ-
ated with the Layering style.

The Layering ABAS is a modifiability ABAS. The reasoning
framework for all modifiability ABASs (and portability is a
form of modifiability) is scenario-based: we posit classes of
probable modification scenarios and then trace the propaga-
tion of changes due to each posited modification to under-
stand their implications. When modifications are confined to
the internals of a specific layer (scenario 1 in Extract 2), then
everything from that layer’s interface up through the top
layer is immune to the modification. In our case, since the
modifications are confined to the internals of the third layer
in Figure 2 (Device Handlers, Graphics Primitives and IPC
Primitives) or the fourth layer (Operating System Abstrac-
tion layer), then the desired portability will be achieved.

The analysis of other scenarios in the layering ABAS show
that the transitive closure of other modifications can be
larger than 1. For example, if application entities (in Figure
2) communicate with one another by directly using the inter-
nals of the IPC Primitives then application entities are sus-
ceptible to the ripple effects of modifications that affect the
internals of the IPC Primitives. This “layer bridging” com-

3. Note that this extract is a condensed portion of the
actual ABAS, which is typically 5-10 pages in
length.

Problem Description: Criteria for Choosing this ABAS
This ABAS will be relevant if your problem inherently
has distinguishable broad categories of functionality
that:

• are internally highly coherent
• are stable with respect to changes (that is, the cate-

gories do not change often, even if their internals do
change)

• depend upon each other in predictable ways
• do not have cycles of dependencies
• have low coupling with other categories, and in par-

ticular are typically only coupled with at most two
other categories

Stimulus/Response Attribute Measures
Layering exists to isolate some parts of a system from
others. Layers are inserted wherever changes are per-
ceived to be independent. So, for example, layers are
typically used to hide communication or database pro-
tocols, to hide operating system or user interface toolkit
implementation specifics.

• Stimulus: a change to a layer in the software

• Responses: number of layers affected and number
of components, interfaces, and connections added,
deleted, and modified, along with a characterization
of the complexity of these changes/deletions/modi-
fications.

Extract 1: Choosing the Layering ABAS

Application entities

Device
Abstractions

Graphics
Abstractions

Device
Handlers

Graphics
Primitives

Operating System Abstraction

Hardware

Figure 2: Layering Style for Portability

Operating System

Anonymous
Comm

IPC
Primitives

promises portability.

How Did the ABAS Help?
Notice that the ABAS isolates and highlights key design
decisions that result in the desired modifiability properties
(locality of changes). Identifying and documenting key
design decisions, and understanding the relationship
between theses design decisions and desired behavior is cen-
tral to predictability in engineering. Understanding this rela-
tionship sometimes only requires qualitative heuristics.
However, the level of sophistication of the analysis is not the
point here. The point is that design decisions within an
ABAS framework are accompanied by an associated analy-
sis and a set of assumptions. These help to ensure the desired
properties are highlighted and adhered to during develop-
ment.

In the current practice of architectural design even simple
heuristics such as avoiding layering bridging are often
ignored. The result of such decisions are at first seemingly
innocuous. Cumulatively, however, they create an architec-

tural rigidity that eventually turns into an insidious and
costly problem.

Our goal is to create an engineering handbook of ABASs,
which we hope will foster a routine software engineering
practice in which such heuristics are in the forefront of every
designer’s mind. This is a theme we will later reiterate. For
now let us move on to addressing modifiability.

Addressing Modifiability: The Publish/Subscribe ABAS
The modifiability requirements for the system center around
the addition, modification, and deletion of producers and
consumers of information including, but not limited to:
changes to smoothing/filtering algorithms, alarm sensing
logic, and trend tracking; new data formats; different dis-
plays; relocation of application entities to other processors.
Although it is not an exact fit, the Publish/Subscribe ABAS
seems well suited to dealing with these requirements. Extract
3 shows the criteria for choosing this ABAS.

In this ABAS, data producers (publishers) and consumers
(subscribers) communicate via an abstraction of shared data.
The paradigm is that they are sharing state rather than explic-
itly communicating. When new data is published all inter-
ested subscribers receive it. The ABAS dissociates
publishers and subscribers of data in terms of their identities,
their locations, the internal format of their shared data, and
the temporal control between them. In this way it helps to
satisfy the modifiability requirements of our system: it is
easy to add or change publishers and subscribers of data
because they do not depend on each other directly. Subscrib-

Analysis
The analysis technique for this ABAS is to investigate a
representative set of anticipated change scenarios.
When examining the ABAS’s response to these scenar-
ios, what we are really doing is examining the transitive
closure of change propagation.

For the purpose of this analysis, we assume the follow-
ing three scenarios:

1. changing the internals of a component in a layer
with no side effects

2. changing the signature of an existing interface
3. adding an new interface for a new service and

exposing this functionality to an upper layer

Changing a Component’s Internals
One kind of modification (the most desirable kind)
affects only the internals of a single layer, as indicated
below by the shading. It is clear from the representation
below that the transitive closure of such a change = 1,
because it does not affect any interface and cannot prop-
agate beyond a single component.

User Interface Toolkit

er Interface Primitives

Device Drivers

Graphics Hardware

User Interface Primitives

Extract 2: Analyzing a Layering ABAS

Problem Description: Criteria for Choosing this ABAS
This ABAS should be chosen if you anticipate that all of
the following conditions will be true:

• The data producers will change the format of the data
that they produce.

• The number and identity of producers and/or con-
sumers of a particular data item is unknown or is
likely to change.

• The temporal ordering between producers and con-
sumers of data is either unknown or subject to fre-
quent changes.

• There are no complex temporal dependencies or
tight, real-time deadlines associated with the produc-
tion and consumption of data.

Stimulus/Response Attribute Measures
• Stimuli:

• a new producer or consumer of data
• a modification to an existing producer or con-

sumer of data
• a change in the timing of data production and

consumption
• Response: the number of components, interfaces,

and connections added, deleted, and modified, along
with a characterization of the complexity of these
changes/deletions/modifications.

Extract 3: Choosing the Publish/Subscribe ABAS

ers only depend upon the state that they “share” with pub-
lishers.

Adding new subscribers of existing published data is easy:
they just subscribe to the existing data. The effects of chang-
ing data formats is limited if the data producer does not
expose the changed data formats to its consumers, i.e., it
maintains its public interface to the data. For example, in the
case of our system alarms may be internally stored and cal-
culated in a variety of ways, but as long as these differences
are masked by the publishers, the remainder of the system is
unaffected.

We can now use this ABAS to organize the system’s commu-
nicating entities according to the information that they share,
and relegate the details of how their communication is
accomplished to the Publish/Subscribe mechanism, as shown
in Figure 3 (where the grey lines represent Publish/Subscribe
communication).

The analysis associated with the Publish/Subscribe ABAS
asks the designer to consider the effects of future modifica-
tions on the structure of the system, as shown in Extract 4.
With respect to these scenarios, this ABAS appears to be
perfectly suited to the modifiability requirements, because
each of the changes is localized to a single publisher or sub-
scriber.

However, the Analysis and Design Heuristics ask the user of
this ABAS to be wary of two performance implications: the
added overhead of the indirection that is part of this mecha-
nism, and the caution that meeting timing requirements may
be difficult. For the moment, however, the design of the sys-
tem can proceed since we are only concerned initially with
the quality attribute of modifiability in this ABAS. Interac-
tions among the ABASs will be dealt with separately in Sec-
tion 4.

The Publish/Subscribe mechanism adds overhead to the
communication between entities in the form of additional
calls (since this mechanism is an additional layer on top of
IPC) and copying the message n times, once for each sub-
scriber. While proposals do exist for real-time Publish/Sub-
scribe mechanisms [9], they are not yet commercially
available and so we must deal directly with this performance

challenge. This highlights a design trade-off between time to
market, cost, and performance (since using an off-the-shelf
non-real-time Publish/Subscribe mechanism results in quick
time to market at a low cost but with no performance guaran-
tees).

Addressing Performance: The Concurrent Pipelines
ABASs
The performance requirements for the patient monitoring
system express the following processing periods and dead-
lines:

• Raw data is sensed every 10 ms. and must be displayed
on display device 1 within 20 ms. of being acquired.

• Many different types of waveform calculations are per-
formed. Some are performed once every 100 ms. and
other are performed once every 300 ms. The 300 ms. cal-
culations are performed using legacy software.

• The results of the 300 ms. calculations should be dis-
played on the patient monitor as a waveform with an
associated sound within 50 ms. of completing the calcu-
lation.

• Certain conditions detectable from analyzing the wave-
forms should cause an alarm to be triggered. The alarm
should manifest on the patient monitor within 500 ms. of
completing the waveform calculation.

• The results of the 100 ms. calculation should be sent (not
necessarily received) to a remote site within 20 ms. of the

Figure 3: Publish/Subscribe Style for Modifiability

from
sensors

Alg 1

Alg 2

Alg n

Acquire

Display

Alarms

Audio

Analysis
While we cannot always measure coupling directly,
there are ways of approximating coupling via scenarios
[5]. These scenarios form a palette of change types, and
you can evaluate your own instances of this ABAS by
determining the extent to which your anticipated
changes fall into each category.

For the purpose of this analysis, we assume six change
scenarios:

1. adding a new consumer of data
2. adding a new producer of an existing data type
3. adding a new producer of a new data type
4. changing the internal representation of an existing

data item
5. deleting an existing data type
6. changing the timing of data production and con-

sumption

Analysis and Design Heuristics
There is a performance penalty to pay in this ABAS
because the coupling between the data producer and
consumer is now indirect, through the subscription man-
ager (irrespective of whether this is implemented as a
separate component).

. . .

Furthermore, any cyclic dependencies or timing require-
ments on message deadlines may be difficult to reason
about in this sub-ABAS.

Extract 4: Analyzing the Publish/Subscribe ABAS

completion of the calculation.
The first design driver to consider here is that there are sev-
eral periodic activities with several processing stages, where
each stage has a real-time deadline. Given that the cost con-
straints of the patient monitoring system force us to entertain
a uniprocessor solution to this problem, the Concurrent Pipe-
lines ABAS—as partially illustrated in Extract 5—appears to
give us the reasoning framework needed to reason about
meeting the stringent real-time performance requirements.

Following the style of the ABAS, we can configure the sys-
tem as a set of concurrently executing pipelines, with the
required periods (pd) and deadlines (dl), as is shown in Fig-
ure 4. Note that waveform data is acquired every 10 ms.
from a single source (a set of sensors) and is subsequently
used by the 20 ms. Display process and the 100 ms. and 300
ms. period analysis algorithms. In effect, the Acquire process
needs to operate at three different rates, but it is forced to be
a single function because it must acquire date from the sen-
sors. The Concurrent Pipelines ABAS assumes that each
pipeline has its own initiating process. This is clearly not the
case here. What to do?4

We will initially bridge the difference between the inherent
nature of the problem and the form that the ABAS leads us to
by assuming that each pipeline has its own initiating process.
Hence we can realize the style as shown in Figure 4. In this
figure rounded rectangles are processes and lines indicate

data transfer between the processes.

There are several points to notice about this design. The
Acquire function has been allocated to three virtual pro-
cesses, one for each pipeline. The shaded area indicates the
one physical process which is actually acquiring the data
within which reside the virtual processes (processes shown
bordered by dashed lines). For now we have three pipelines
and can directly use the Concurrent Pipelines reasoning
model. We will return to this design decision later.

Since the alarm function must be completed 500 ms. after
the algorithm processing, but must also wait for the comple-
tion of Send (with a 20 ms. period) and Audio (with a 50 ms.
period) in the second and third pipelines respectively, the
deadlines for the Alarm processes were changed to 480 and
450 ms.

Extract 6 from the ABAS handbook offers guidance for ana-
lyzing the Concurrent Pipelines style’s performance charac-
teristics. In particular, the ABAS shows how to reason about
the effects of priority assignments on latency and provides a
formula for calculating (and hence predicting and control-

Criteria for Choosing this ABAS
For the Concurrent Pipelines ABAS, we consider a single
processor on which multiple processes reside and are
organized into sequences. Each process performs compu-
tations on its own input data stream. Each final output
from the system must be produced within a specified time
interval after the arrival of an input, after all computations
have been performed. The analysis focus of the Concur-
rent Pipelines ABAS is how to reason about the effects of
the process prioritization strategy on end-to-end latency.

This ABAS will be relevant if

• your problem inherently has real-time latency require-
ments associated with the production of final outputs

• the topology you are using or considering consists of
multiple processes arranged as concurrent pipelines

Stimulus/Response Attribute Measures
The important stimulus and the response that we want to
reason about, control, and measure are characterized as
follows:

• Stimulus: periodic or sporadic arrival of messages

• Response: worst-case latency associated with pro-
cessing this message

Extract 5: Choosing the Concurrent Pipelines ABAS

4. It should be noted that this kind of question is not atypical:
ABASs will not always precisely fit design or analysis situa-
tion at hand. Having to map your problem into a model that
is analyzable by an ABAS, or having to extrapolate beyond
what the ABAS offers will be a common situation in prac-
tice. In such situations the engineer has a choice: to adapt the
design so that it is amenable to routine analysis, or to extrap-
olate beyond the style as given to cover the existing problem.
Each ABAS offers guidelines to help in these situations
along with references to works that offer more comprehen-
sive treatments of the problem space.

Figure 4: Design Using the Concurrent Pipelines Style
to Predict Performance

Display
(20 ms dl)

Send
(20 ms dl)

Analyze
(100 ms pd)

Analyze
(300 ms pd)

Audio
(50 ms dl)

Alarm
(480 ms dl)

Alarm
(450 ms dl)

Acquire-1
(10 ms pd)

Acquire-2

Acquire-3

ling) the worst-case latency of the system.

First, consider the 10 ms. deadline associated with the
Acquire process. Assume that the publication of data intro-
duces on average 2-3 ms. latency. In the worst-case Acquire-
1, Acquire-2, and Acquire-3 are publishing during the same 10
ms. period in which case Acquire-1 is in danger of missing its
10 ms. deadline. This alerts us the possibility of Acquire-1
incurring significant delays due to Acquire-2 and Acquire-3.
Secondly, even if we can eliminate the delays due to Acquire-
2 and Acquire-3, if Acquire-1 publishes data every 10 ms. it
will use up about 30% of the processor’s resources.

We can make two design decisions based upon this simple
exercise: 1) Acquire-1 must use a less expensive data transfer
mechanism, and 2) we must prevent Acquire-2 and Acquire-3
from significantly delaying Acquire-1, since it has the short-
est period. To treat the first issue we will use the less expen-
sive IPC mechanism instead of the Publish/Subscribe
mechanism. To treat the second issue we will place Acquire-1
in a separate process whose priority is higher than the prior-
ity of the process that houses Acquire-2 and Acquire-3. This is
consistent with the one of the Analysis and Design Heuris-
tics in the ABAS (in Extract 6) which suggests that priorities
should be a function of deadlines: the shorter the deadline,
the higher the priority.

The next question is how to assign priorities to each process.
The ABAS provides us with several guidelines:

• the effective priority of a pipeline is the lowest priority in
the pipeline

• shorter deadlines are generally accorded high priorities

These guidelines suggest the following priority structure for
the three pipelines (larger numbers are higher priorities):

1. Acquire-1 (30) --> Display (27)
2. Acquire-2 (20) --> Analyze-100 (20) --> Send (20) -->

Alarm (18)
3. Acquire-3 (20) --> Analyze-300 (19) --> Audio (15) -->

Alarm (13)

There are a few points to note about the prioritization struc-
ture. Pipeline 1 has priorities that are higher than the priori-
ties of the other pipelines. Consequently it cannot be delayed
by the other pipelines. Since we have only separated data
acquisition into two processes, Acquire-2 and -3 are left as
cohabiting the same process and consequently must have the
same priority. Consequently pipeline 3 can potentially delay
pipeline 2. Analyze-300 in the third pipeline has a priority that
is consistent with its 300 ms deadline; a priority that is lower
than Acquire-3, but higher than Alarm in pipeline 2. Conse-
quently it can delay pipeline 2.

How Did the ABAS Help?
These observations (and even a more quantitative analysis)
are enabled by the Concurrent Pipelines ABAS. The ABAS
provides a framework for reasoning about this architectural
style thereby providing rationale for design decisions, and
just as importantly, a framework within which the design can
evolve (by changing priorities, for example) while maintain-
ing predictable performance behavior. These guidelines pro-
vide a similar benefit as being able to characterize an
algorithm as O(n2) or O(log n).

4 COMPOSING ABASs FOR DESIGN
In this section we will compose a complete architectural
design from the ABAS-inspired pieces of architecture dis-
cussed in the previous section. During this phase we move
from the idealized design world of pure ABASs into the real
world of design limitations and tradeoffs.

The System’s Architectural Design
A complete architectural representation, from the perspec-
tive of its concurrency view as mapped onto hardware, is
shown in Figure 5 (where empty rectangles indicate separate

Analysis
To calculate the latency of a message traversing the ith

pipeline, you must determine the preemptive effects of
the other pipelines. The key to determining these preemp-
tive effects is to first identify the lowest priority process
in the ith pipeline [3]. In brief, the following steps can be
used to obtain an estimate of the worst-case latency for
an input message using the ith pipeline consisting of pro-
cesses Pi1, Pi2 ... Pim:

1. Determine the priority of the lowest priority process
in the ith pipeline, denoted by LowPi.

2. Determine the set of pipelines whose lowest priority
process has a priority greater than LowPi. In other
words, all of the processes in these pipelines have a
priority greater than LowPi. Denote this set as H for
high. (Treat equal priorities as greater.)

3. Determine the set of pipelines that start with pro-
cesses whose priority is greater than LowPi but even-
tually drop below LowPi. Denote this set by HL,
standing for starting higher and dropping lower.

4. Determine the set of pipelines that start with pro-
cesses whose priority is lower than LowPi but eventu-
ally rise above LowPi. Denote this set by LH,
standing for starting lower and rising to higher.

Calculate the worst-case latency for the ith pipeline by
iteratively applying the following formula until it con-
verges.

The above steps for calculating latency illustrate the sen-
sitivity of the pipeline’s latency to the priority of the low-
est priority process in the pipeline under scrutiny (i.e.,
LowPi) since the priority categories (i.e., H, HL, and LH)
are determined by LowPi.

Analysis and Design Heuristics
1. What are desirable priority assignments?

Answer: In many situations assigning higher priorities
for shorter deadlines is a good strategy.

2. What if deadlines are beyond the end of the period?
Answer: When deadlines are beyond the end of the
period it is not sufficient to only examine the comple-
tion time of the first job as this job might not be the
one with the longest completion time.

Ln 1+
Ln

Tj
------ Cj

j H∈
∑ Ci Cj

j HL∈
∑ max Cj()

j LH∈
+ + +=

Extract 6: Analyzing Concurrent Pipelines

computational resources such as a CPU or network) and
shaded rectangles with horizontal lines indicate queues).
This design now includes a number of key design decisions
worth elaborating.

Key Design Decisions
The Acquire and Display processes correspond to the Acquire-
1 and Display processes in Figure 4. This pipeline represents
the greatest challenge to system performance, since it exe-
cutes every 10 ms. The Display process is responsible for
interacting with the Display-1 device (direct data reads/writes
to system resources such as queues are indicated by thin
black arrows). The Display process is likely to incur delays
due to interacting with the device which it has been given an
additional 20 ms. to accomplish. However, if device interac-
tions have not been completed by the time Acquire is ready to
read data again, Acquire should not be delayed. Consequently
the Display function has been allocated to its own process to
take advantage of the additional 20 ms.

The Acquire and Display processes communicate via IPC,
rather than using the Publish/Subscribe connectors that con-
nect the other processes. The black dashed arrow in Figure 5
indicates the place in which IPC was used instead of Publish/
Subscribe. This is a key deviation from the Publish/Sub-
scribe style in that it is the only portion of the communica-
tion between system’s software entities that does not use the
Publish/Subscribe mechanism.

The Distribute process corresponds to Acquire-2 and Acquire-3
in Figure 4. Its role is to wake up every 100 ms, read data
from memory that it shares with Acquire, and publish data for
the 100 ms. and 300 ms. algorithms. Distribute has a lower
priority than Acquire to ensure that its processing does not
delay Acquire.

We entertained the idea of allowing the Analyze process to
directly read data from shared memory (that is, without
using Distribute as an intermediary that publishes data), but
this would compromise the ability to move application enti-
ties to another processor in the future. Note we are assuming
that a COTS published/subscriber service would provide
location transparency whereas a home-grown abstract data
type (ADT) mechanism would not, for reasons of cost and
time to market.

As is shown in Figure 4, the alarm processing is carried out
within two separate processes at two separate priorities. Both
processes call the same reentrant alarm processing proce-
dure. Alarm processing is not combined with the Analyze
processes since Alarm’s deadline is longer than the periods of
the Analyze processes and thus could conceivably cause the
Analyze processes to miss deadlines. Alarm processing is
carried out within two processes (as opposed to a single pro-
cess) to avoid non-preemptable access to the alarm process-
ing, which could result in unnecessary delays to the
processing of the 100 ms waveforms.

The 20 ms. deadline Send function was collapsed into the
100 ms. Analyze function, resulting in a process that we now
call Analyze & Send. The 50 ms. deadline Audio function was
collapsed into the 300 ms. Analyze function, resulting in the
Analyze & Audio process. In both cases, no additional benefits
are derived by putting these functions their own processes
and so these were collapsed in the name of simplicity, and to
save the overhead of the additional processes.

Key Design Tradeoffs
This design now contains several other tradeoffs that need to
be paid attention to. Layer-bridging: as we described above,
if Acquire-1 used the Publish/Subscribe mechanism to pub-
lish data every 10 ms. it would use up about 30% of the pro-

Display
(20 ms)

Network
Driver

Analyze & Send
(100 ms)

Analyze & Audio
(300 ms)

Alarm
High-P

Acquire
(10 ms)

Alarm
Low-P

Display-2
Driver

Figure 5: The Concurrency/Hardware View of the Patient Monitoring System Architecture

Display - 1

Network

Display - 2

Distribute
(100/300 ms)

cessor’s resources. This is a trade-off between portability and
performance. By using the IPC Primitives layer directly,
changes to that layer will ripple into application entities. We
feel that this is an acceptable tradeoff because the perfor-
mance arguments are compelling, and because we are con-
trolling the harmful effects of the layer bridging by strictly
limiting the use of IPC to this one data path.

Another trade-off favoring performance over modifiability
occurs where the alarm function is split.

In using a Publish/Subscribe mechanism in favor of an ADT
mechanism we sacrificed some performance in favor of
modifiability.

5 RESULTS

We began this paper by arguing for the modularity and com-
posability of the ABAS-oriented approach. ABASs provide
individual styles associated with formal and heuristic analy-
ses. An architect indexes into these by the stimuli to be pro-
cessed, the responses to be controlled and by topology.

What Does ABAS-based Design Buy?
In using each ABAS an analytic framework is invoked, tell-
ing the architect how to control the responses. In addition,
the ABASs’ key design decisions are highlighted (typically
realized as key analysis questions) so that the architect is
alerted to the need to pay particular concern to these areas.

A design method should help in dividing and conquering a
complex problem: dividing a problem into manageable
chunks and then conquering the composition of those
chunks. Dividing is typically easy. Combining and conquer-
ing is where the problems lie. ABASs guide us in dividing
and helps to conquer by highlighting the key interactions
among the styles and their analyses.

Consider the results of the experiment that we performed on
the patient monitoring system: the chosen set of ABASs
divided the problem for us into individually reasonable (but
idealized) solutions. Our layering was unbridged. Publish/
subscribe was used everywhere. Pipelines didn’t interact.
The conquering however didn’t occur until those individu-
ally reasonable solutions are combined. Doing so forced us
to wrestle with the tradeoffs that are found in the real world
of design. The individual ABASs pointed us to the likely
locations of these trade-off points and told us how to reason
about them to ensure a solution that meets all of the require-
ments.

While we had access to some limited architectural documen-
tation of the original design, we have now created a design
for the patient monitoring system working entirely from the
requirements and from ABASs. This is a real system, not
simply an academic exercise. The result of our ABAS-based
design is extremely close to what was finally implemented as
judged by a designer who was involved with the original
architecture design.

So what is the point of this exercise? The point is that by
applying ABASs we were able to design efficiently, mini-
mizing both risks and costs. And we designed with confi-
dence, knowing that we were using proven techniques with

analyzable properties.

Comparing to the Actual Design
So how well did we do, compared with the actual architec-
ture of this system that was implemented? The short answer
is that we did very well, finding all of the serious quality
attribute issues in the architecture that the company had to
face.

We will first address efficiency. We were able to create the
broad outlines of the architecture (for a system of roughly
1,000,000 lines of code) in 1-2 hours, simply by matching
ABASs to the requirements and looking at the likely prob-
lems in composing them. We completed the architecture in
less than one week of work, including considering other
architectural alternatives, such as the use of the Abstract
Data Repository ABAS for data sharing, in place of the Pub-
lish/Subscribe ABAS. This is not to say that every design
detail was chosen and documented in one week but rather
that all key architecture decisions were made and analyzed
within this time.

The system, as we've portrayed it, appears simple. That is
due in part to us abstracting the problem, but it is primarily
due to the way in which we look at the problem; specifically
it is due to the way that ABASs divide up the problem into
separately analyzable and solvable pieces. By cutting to the
essence of key aspects of the problem we are able to turn a
complex problem into a simple one.

ABASs also helped us minimize both risk and cost. By
applying ABAS reasoning to the architecture we were able
to pinpoint critical quality attribute problems, such as the
need to split data acquisition into two processes. We pre-
dicted other problems as well, such as the need to bridge the
layering scheme and bypass the Publish/Subscribe mecha-
nism to achieve the desired latency characteristics. And we
chose a set of processes and their priorities which will allow
us to meet the system’s real-time requirements.

As a result, we designed with confidence. Architectural
design is a huge risk in any project: the wrong design can
doom a project, despite heroic efforts by the implementors.

Another benefit of ABASs is that they facilitate communica-
tion among stakeholders and make the justification of archi-
tectural decisions more concrete. Architecture is a social
activity: an architect must be able to communicate an archi-
tecture, including its benefits and pitfalls, to a wide group of
stakeholders. Failure to get “buy-in” on a architecture can be
just as devastating to a project’s eventual success as a poor
architecture.

6 CONCLUSIONS
In this paper we introduced the notion of an Attribute-Based
Architectural Style; which is a relatively small capsule of
design knowledge comprising an architectural style strongly
coupled with an attribute-specific analysis style and a set of
analysis questions and heuristics. ABASs are a style of rea-
soning about a specific quality attribute (such as perfor-
mance or modifiability) closely tied to an architectural style.
The goal is to reveal the consequences of the design deci-
sions embedded in the style. Our contention is that a collec-

tion of ABASs covering a suitably large number of patterns
and attributes can serve as the key building blocks for
designing systems with predictable quality attribute behav-
ior.

Why do we believe that ABASs can serve as key building
blocks for designing systems? Over the past two years we
have created a collection of ABASs and used them for
design and for analysis in conducting architect evaluations
[6]. They revealed key design decisions efficiently; revealed
design alternatives quickly; focussed design discussions at
the right level of abstraction; highlighted tradeoffs between
attributes; provided the basis for documenting design ratio-
nale; and facilitated a separation and then composition of
concerns. We have now used ABASs in a dozen analysis and
design exercises with industrial systems. We grant that this is
limited experience from which to draw conclusions, but we
are (in politician speak) cautiously optimistic.

We have a number of reasons to be cautiously optimistic
about ABASs. First of all, we feel that this type of docu-
mented and analyzed design is crucial for the formation of an
engineering discipline of software, as is suggested by Shaw
[11]. In this work, Shaw states that any mature engineering
discipline contains a handbook that documents a set of “unit
operations”. These patterns of design, accompanied with
analyses, form the basis for all routine design and analysis
within the engineering discipline.

ABASs are the basis for exactly the type of information that
is needed in a software engineering handbook. They are very
similar in nature to some of the key contributions to software
engineering over the past twenty years. These key contribu-
tions explicitly or implicitly link design with analysis. That's
exactly what ABASs do for architecture. Over the past
twenty years some of the key contributions to software engi-
neering have to do with techniques for increasing our under-
standing of and managing quality attributes. Parnas'
articulation of the notion of information hiding was relating
a style of design to modifiability. Knuth's compendium of
algorithms connects detailed design with performance analy-
sis (complexity).

The architectural styles and the analysis that we have docu-
mented are not original, but linking them together as com-
posable capsules is original. Moreover, using these capsules
as a vehicle for simplifying architectural design and analysis
holds promise for introducing a new mind-set for software

engineering, a mind-set which focuses attention on analyz-
ing the ramifications of the architectural decisions in a mod-
ular and methodical manner.

7 REFERENCES
1. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P.,

Stal, M. Pattern-Oriented Software Architecture: A Sys-
tem of Patterns, Wiley & Sons, 1996.

2. Gamma, E., Helm, R., Johnson, R., Vlissides, J. Design
Patterns, Addison Wesley, 1995.

3. Gonzalez Harbour, M., Klein, M., Lehoczky, J., “Fixed
Priority Scheduling of Periodic Tasks with Varying Exe-
cution Priority”, Proceedings of IEEE Real-Time Systems
Symposium, 1991, 116-128.

4. Hofmeister, C., Nord, R., Soni, D., Applied Software
Architecture, Addison-Wesley, 2000.

5. Kazman, R., Abowd, G., Bass, L., Webb, M., “SAAM: A
Method for Analyzing the Properties of Software Archi-
tectures,'' Proceedings of the 16th International Confer-
ence on Software Engineering, Sorrento, Italy, May
1994, 81-90

6. Kazman, R., Barbacci, M., Klein, M., Carriere, S. J.,
Woods, S. G. “Experience with Performing Architecture
Tradeoff Analysis”, Proceedings of the 21st Interna-
tional Conference on Software Engineering, Los Ange-
les, CA, May 1999, 54-63.

7. Klein, M., Kazman, R., Bass, L., Carriere, S. J., Bar-
bacci, M., Lipson H. “Attribute-Based Architectural
Styles,” Software Architecture: Proceedings of the First
Working IFIP Conference on Software Architecture, San
Antonio, TX, February 1999, 225-243.

8. Klein, M., Kazman, R., “Attribute-Based Architectural
Styles”, CMU/SEI-99-TR-22, Software Engineering
Institute, Carnegie Mellon University, 1999

9. Rajkumar, R., Gagliardi, M., Sha, L., “The Real-Time
Publisher/Subscriber Inter-Process Communication
Model for Distributed Real-Time Systems: Design and
Implementation”, Proceedings of the IEEE Real-time
Technology and Applications Symposium, June 1995.

10. Shaw, M., Garlan, D. Software Architecture: Perspec-
tives on an Emerging Discipline, Prentice Hall, 1996.

11. Shaw, M., “Prospects for an Engineering Discipline of
Software”, IEEE Software, 7(6), November 1990, 15-24.

	A BASis (or ABASs) for Reasoning About Software Architectures
	Mark Klein, Rick Kazman, Robert Nord
	Software Engineering Institute, Carnegie Mellon University
	Pittsburgh, PA, U.S.A. 15213
	+1-412-268-7615 {mk, kazman, rn}@sei.cmu.edu
	ABSTRACT
	Keywords

	1 ATTRIBUTE-BASED ARCHITECTURAL STYLES
	Architectural Styles
	What are ABASs?
	The Sections of an ABAS
	Approach

	2 CASE STUDY
	Figure 1: Producer Consumer Processing Scenario

	3 APPLYING ABASs
	Addressing Portability: The Layering ABAS
	Extract 1: Choosing the Layering ABAS
	Figure 2: Layering Style for Portability

	Analysis
	1. changing the internals of a component in a layer with no side effects
	2. changing the signature of an existing interface
	3. adding an new interface for a new service and exposing this functionality to an upper layer

	Changing a Component’s Internals
	How Did the ABAS Help?
	Extract 3: Choosing the Publish/Subscribe ABAS

	Addressing Modifiability: The Publish/Subscribe ABAS
	Figure 3: Publish/Subscribe Style for Modifiability
	Analysis
	1. adding a new consumer of data
	2. adding a new producer of an existing data type
	3. adding a new producer of a new data type
	4. changing the internal representation of an existing data item
	5. deleting an existing data type
	6. changing the timing of data production and consumption

	Analysis and Design Heuristics

	Addressing Performance: The Concurrent Pipelines ABASs
	Extract 5: Choosing the Concurrent Pipelines ABAS
	Figure 4: Design Using the Concurrent Pipelines Style to Predict Performance

	Analysis
	1. Determine the priority of the lowest priority process in the ith pipeline, denoted by LowPi.
	2. Determine the set of pipelines whose lowest priority process has a priority greater than LowPi...
	3. Determine the set of pipelines that start with processes whose priority is greater than LowPi ...
	4. Determine the set of pipelines that start with processes whose priority is lower than LowPi bu...

	Analysis and Design Heuristics
	1. What are desirable priority assignments? Answer: In many situations assigning higher prioritie...
	2. What if deadlines are beyond the end of the period? Answer: When deadlines are beyond the end ...
	1. Acquire-1 (30) --> Display (27)
	2. Acquire-2 (20) --> Analyze-100 (20) --> Send (20) --> Alarm (18)
	3. Acquire-3 (20) --> Analyze-300 (19) --> Audio (15) --> Alarm (13)

	How Did the ABAS Help?

	4 COMPOSING ABASs FOR DESIGN
	The System’s Architectural Design
	Key Design Decisions
	Figure 5: The Concurrency/Hardware View of the Patient Monitoring System Architecture

	Key Design Tradeoffs

	5 RESULTS
	We began this paper by arguing for the modularity and composability of the ABAS-oriented approach...
	What Does ABAS-based Design Buy?
	Comparing to the Actual Design

	6 CONCLUSIONS
	7 REFERENCES
	1. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M. Pattern-Oriented Software Arc...
	2. Gamma, E., Helm, R., Johnson, R., Vlissides, J. Design Patterns, Addison Wesley, 1995.
	3. Gonzalez Harbour, M., Klein, M., Lehoczky, J., “Fixed Priority Scheduling of Periodic Tasks wi...
	4. Hofmeister, C., Nord, R., Soni, D., Applied Software Architecture, Addison-Wesley, 2000.
	5. Kazman, R., Abowd, G., Bass, L., Webb, M., “SAAM: A Method for Analyzing the Properties of Sof...
	6. Kazman, R., Barbacci, M., Klein, M., Carriere, S. J., Woods, S. G. “Experience with Performing...
	7. Klein, M., Kazman, R., Bass, L., Carriere, S. J., Barbacci, M., Lipson H. “Attribute-Based Arc...
	8. Klein, M., Kazman, R., “Attribute-Based Architectural Styles”, CMU/SEI-99-TR-22, Software Engi...
	9. Rajkumar, R., Gagliardi, M., Sha, L., “The Real-Time Publisher/Subscriber Inter-Process Commun...
	10. Shaw, M., Garlan, D. Software Architecture: Perspectives on an Emerging Discipline, Prentice ...
	11. Shaw, M., “Prospects for an Engineering Discipline of Software”, IEEE Software, 7(6), Novembe...

